際際滷shows by User: ChandanReddy4 / http://www.slideshare.net/images/logo.gif 際際滷shows by User: ChandanReddy4 / Mon, 14 Aug 2017 16:15:16 GMT 際際滷Share feed for 際際滷shows by User: ChandanReddy4 Machine Learning for Survival Analysis /slideshow/machine-learning-for-survival-analysis/78830534 slides-170814161516
Due to the advancements in various data acquisition and storage technologies, different disciplines have attained the ability to not only accumulate a wide variety of data but also to monitor observations over longer time periods. In many real-world applications, the primary objective of monitoring these observations is to estimate when a particular event of interest will occur in the future. One of the major difficulties in handling such problem is the presence of censoring, i.e., the event of interests is unobservable in some instance which is either because of time limitation or losing track. Due to censoring, standard statistical and machine learning based predictive models cannot readily be applied to analyze the data. An important subfield of statistics called survival analysis provides different mechanisms to handle such censored data problems. In addition to the presence of censoring, such time-to-event data also encounters several other research challenges such as instance/feature correlations, high-dimensionality, temporal dependencies, and difficulty in acquiring sufficient event data in a reasonable amount of time. To tackle such practical concerns, the data mining and machine learning communities have started to develop more sophisticated and effective algorithms that either complement or compete with the traditional statistical methods in survival analysis. In spite of the importance of this problem and relevance to real-world applications, this research topic is scattered across various disciplines. In this tutorial, we will provide a comprehensive and structured overview of both statistical and machine learning based survival analysis methods along with different applications. We will also discuss the commonly used evaluation metrics and other related topics. The material will be coherently organized and presented to help the audience get a clear picture of both the fundamentals and the state-of-the-art techniques.]]>

Due to the advancements in various data acquisition and storage technologies, different disciplines have attained the ability to not only accumulate a wide variety of data but also to monitor observations over longer time periods. In many real-world applications, the primary objective of monitoring these observations is to estimate when a particular event of interest will occur in the future. One of the major difficulties in handling such problem is the presence of censoring, i.e., the event of interests is unobservable in some instance which is either because of time limitation or losing track. Due to censoring, standard statistical and machine learning based predictive models cannot readily be applied to analyze the data. An important subfield of statistics called survival analysis provides different mechanisms to handle such censored data problems. In addition to the presence of censoring, such time-to-event data also encounters several other research challenges such as instance/feature correlations, high-dimensionality, temporal dependencies, and difficulty in acquiring sufficient event data in a reasonable amount of time. To tackle such practical concerns, the data mining and machine learning communities have started to develop more sophisticated and effective algorithms that either complement or compete with the traditional statistical methods in survival analysis. In spite of the importance of this problem and relevance to real-world applications, this research topic is scattered across various disciplines. In this tutorial, we will provide a comprehensive and structured overview of both statistical and machine learning based survival analysis methods along with different applications. We will also discuss the commonly used evaluation metrics and other related topics. The material will be coherently organized and presented to help the audience get a clear picture of both the fundamentals and the state-of-the-art techniques.]]>
Mon, 14 Aug 2017 16:15:16 GMT /slideshow/machine-learning-for-survival-analysis/78830534 ChandanReddy4@slideshare.net(ChandanReddy4) Machine Learning for Survival Analysis ChandanReddy4 Due to the advancements in various data acquisition and storage technologies, different disciplines have attained the ability to not only accumulate a wide variety of data but also to monitor observations over longer time periods. In many real-world applications, the primary objective of monitoring these observations is to estimate when a particular event of interest will occur in the future. One of the major difficulties in handling such problem is the presence of censoring, i.e., the event of interests is unobservable in some instance which is either because of time limitation or losing track. Due to censoring, standard statistical and machine learning based predictive models cannot readily be applied to analyze the data. An important subfield of statistics called survival analysis provides different mechanisms to handle such censored data problems. In addition to the presence of censoring, such time-to-event data also encounters several other research challenges such as instance/feature correlations, high-dimensionality, temporal dependencies, and difficulty in acquiring sufficient event data in a reasonable amount of time. To tackle such practical concerns, the data mining and machine learning communities have started to develop more sophisticated and effective algorithms that either complement or compete with the traditional statistical methods in survival analysis. In spite of the importance of this problem and relevance to real-world applications, this research topic is scattered across various disciplines. In this tutorial, we will provide a comprehensive and structured overview of both statistical and machine learning based survival analysis methods along with different applications. We will also discuss the commonly used evaluation metrics and other related topics. The material will be coherently organized and presented to help the audience get a clear picture of both the fundamentals and the state-of-the-art techniques. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/slides-170814161516-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Due to the advancements in various data acquisition and storage technologies, different disciplines have attained the ability to not only accumulate a wide variety of data but also to monitor observations over longer time periods. In many real-world applications, the primary objective of monitoring these observations is to estimate when a particular event of interest will occur in the future. One of the major difficulties in handling such problem is the presence of censoring, i.e., the event of interests is unobservable in some instance which is either because of time limitation or losing track. Due to censoring, standard statistical and machine learning based predictive models cannot readily be applied to analyze the data. An important subfield of statistics called survival analysis provides different mechanisms to handle such censored data problems. In addition to the presence of censoring, such time-to-event data also encounters several other research challenges such as instance/feature correlations, high-dimensionality, temporal dependencies, and difficulty in acquiring sufficient event data in a reasonable amount of time. To tackle such practical concerns, the data mining and machine learning communities have started to develop more sophisticated and effective algorithms that either complement or compete with the traditional statistical methods in survival analysis. In spite of the importance of this problem and relevance to real-world applications, this research topic is scattered across various disciplines. In this tutorial, we will provide a comprehensive and structured overview of both statistical and machine learning based survival analysis methods along with different applications. We will also discuss the commonly used evaluation metrics and other related topics. The material will be coherently organized and presented to help the audience get a clear picture of both the fundamentals and the state-of-the-art techniques.
Machine Learning for Survival Analysis from Chandan Reddy
]]>
6816 62 https://cdn.slidesharecdn.com/ss_thumbnails/slides-170814161516-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Big Data Analytics for Healthcare /slideshow/big-data-analytics-for-healthcare/53259566 part11-150928040448-lva1-app6891
Large amounts of heterogeneous medical data have become available in various healthcare organizations (payers, providers, pharmaceuticals). Those data could be an enabling resource for deriving insights for improving care delivery and reducing waste. The enormity and complexity of these datasets present great challenges in analyses and subsequent applications to a practical clinical environment. More details are available here http://dmkd.cs.wayne.edu/TUTORIAL/Healthcare/]]>

Large amounts of heterogeneous medical data have become available in various healthcare organizations (payers, providers, pharmaceuticals). Those data could be an enabling resource for deriving insights for improving care delivery and reducing waste. The enormity and complexity of these datasets present great challenges in analyses and subsequent applications to a practical clinical environment. More details are available here http://dmkd.cs.wayne.edu/TUTORIAL/Healthcare/]]>
Mon, 28 Sep 2015 04:04:48 GMT /slideshow/big-data-analytics-for-healthcare/53259566 ChandanReddy4@slideshare.net(ChandanReddy4) Big Data Analytics for Healthcare ChandanReddy4 Large amounts of heterogeneous medical data have become available in various healthcare organizations (payers, providers, pharmaceuticals). Those data could be an enabling resource for deriving insights for improving care delivery and reducing waste. The enormity and complexity of these datasets present great challenges in analyses and subsequent applications to a practical clinical environment. More details are available here http://dmkd.cs.wayne.edu/TUTORIAL/Healthcare/ <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/part11-150928040448-lva1-app6891-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Large amounts of heterogeneous medical data have become available in various healthcare organizations (payers, providers, pharmaceuticals). Those data could be an enabling resource for deriving insights for improving care delivery and reducing waste. The enormity and complexity of these datasets present great challenges in analyses and subsequent applications to a practical clinical environment. More details are available here http://dmkd.cs.wayne.edu/TUTORIAL/Healthcare/
Big Data Analytics for Healthcare from Chandan Reddy
]]>
14375 16 https://cdn.slidesharecdn.com/ss_thumbnails/part11-150928040448-lva1-app6891-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
https://public.slidesharecdn.com/v2/images/profile-picture.png https://cdn.slidesharecdn.com/ss_thumbnails/slides-170814161516-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/machine-learning-for-survival-analysis/78830534 Machine Learning for S... https://cdn.slidesharecdn.com/ss_thumbnails/part11-150928040448-lva1-app6891-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/big-data-analytics-for-healthcare/53259566 Big Data Analytics for...