ºÝºÝߣshows by User: JorgeRodrguezArajo / http://www.slideshare.net/images/logo.gif ºÝºÝߣshows by User: JorgeRodrguezArajo / Mon, 22 May 2017 10:14:52 GMT ºÝºÝߣShare feed for ºÝºÝߣshows by User: JorgeRodrguezArajo Visual Perception Analysis with GazeHits /JorgeRodrguezArajo/visual-perception-analysis-with-gazehits-76203529 gazehits-170522101452
GazeHits is a design assistant tool to know how your design is perceived in terms of visual attention. It bases itself on state-of-the-art visual attention computer models to identify the elements and features that captures attention. GazeHits makes easy to analyze alternative designs and decide when a work is ready to present it to your customer.]]>

GazeHits is a design assistant tool to know how your design is perceived in terms of visual attention. It bases itself on state-of-the-art visual attention computer models to identify the elements and features that captures attention. GazeHits makes easy to analyze alternative designs and decide when a work is ready to present it to your customer.]]>
Mon, 22 May 2017 10:14:52 GMT /JorgeRodrguezArajo/visual-perception-analysis-with-gazehits-76203529 JorgeRodrguezArajo@slideshare.net(JorgeRodrguezArajo) Visual Perception Analysis with GazeHits JorgeRodrguezArajo GazeHits is a design assistant tool to know how your design is perceived in terms of visual attention. It bases itself on state-of-the-art visual attention computer models to identify the elements and features that captures attention. GazeHits makes easy to analyze alternative designs and decide when a work is ready to present it to your customer. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/gazehits-170522101452-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> GazeHits is a design assistant tool to know how your design is perceived in terms of visual attention. It bases itself on state-of-the-art visual attention computer models to identify the elements and features that captures attention. GazeHits makes easy to analyze alternative designs and decide when a work is ready to present it to your customer.
Visual Perception Analysis with GazeHits from Jorge Rodr鱈guez Ara炭jo
]]>
10796 4 https://cdn.slidesharecdn.com/ss_thumbnails/gazehits-170522101452-thumbnail.jpg?width=120&height=120&fit=bounds presentation 000000 http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
OpenLMD, Multimodal Monitoring and Control of LMD processing /slideshow/openlmd-multimodal-monitoring-and-control-of-lmd-processing/72168023 openlmd-170215075716
This paper presents OpenLMD, a novel open-source solution for on-line multimodal monitoring of Laser Metal Deposition (LMD). The solution is also applicable to a wider range of laser-based applications that require on-line control (e.g. laser welding). OpenLMD is a middleware that enables the orchestration and virtualization of a LMD robot cell, using several open-source frameworks (e.g. ROS, OpenCV, PCL). The solution also allows reconfiguration by easy integration of multiple sensors and processing equipment. As a result, OpenLMD delivers significant advantages over existing monitoring and control approaches, such as improved scalability, and multimodal monitoring and data sharing capabilities. ]]>

This paper presents OpenLMD, a novel open-source solution for on-line multimodal monitoring of Laser Metal Deposition (LMD). The solution is also applicable to a wider range of laser-based applications that require on-line control (e.g. laser welding). OpenLMD is a middleware that enables the orchestration and virtualization of a LMD robot cell, using several open-source frameworks (e.g. ROS, OpenCV, PCL). The solution also allows reconfiguration by easy integration of multiple sensors and processing equipment. As a result, OpenLMD delivers significant advantages over existing monitoring and control approaches, such as improved scalability, and multimodal monitoring and data sharing capabilities. ]]>
Wed, 15 Feb 2017 07:57:16 GMT /slideshow/openlmd-multimodal-monitoring-and-control-of-lmd-processing/72168023 JorgeRodrguezArajo@slideshare.net(JorgeRodrguezArajo) OpenLMD, Multimodal Monitoring and Control of LMD processing JorgeRodrguezArajo This paper presents OpenLMD, a novel open-source solution for on-line multimodal monitoring of Laser Metal Deposition (LMD). The solution is also applicable to a wider range of laser-based applications that require on-line control (e.g. laser welding). OpenLMD is a middleware that enables the orchestration and virtualization of a LMD robot cell, using several open-source frameworks (e.g. ROS, OpenCV, PCL). The solution also allows reconfiguration by easy integration of multiple sensors and processing equipment. As a result, OpenLMD delivers significant advantages over existing monitoring and control approaches, such as improved scalability, and multimodal monitoring and data sharing capabilities. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/openlmd-170215075716-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This paper presents OpenLMD, a novel open-source solution for on-line multimodal monitoring of Laser Metal Deposition (LMD). The solution is also applicable to a wider range of laser-based applications that require on-line control (e.g. laser welding). OpenLMD is a middleware that enables the orchestration and virtualization of a LMD robot cell, using several open-source frameworks (e.g. ROS, OpenCV, PCL). The solution also allows reconfiguration by easy integration of multiple sensors and processing equipment. As a result, OpenLMD delivers significant advantages over existing monitoring and control approaches, such as improved scalability, and multimodal monitoring and data sharing capabilities.
OpenLMD, Multimodal Monitoring and Control of LMD processing from Jorge Rodr鱈guez Ara炭jo
]]>
5669 5 https://cdn.slidesharecdn.com/ss_thumbnails/openlmd-170215075716-thumbnail.jpg?width=120&height=120&fit=bounds presentation 000000 http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
OpenLMD, Open Laser Metal Deposition /slideshow/openlmd-open-laser-metal-deposition/67929835 openlmdpresentation-161031163629
OpenLMD (http://openlmd.github.io/) is a set of software components provided to demonstrate last advances on laser processing control systems. Built on ROS (Robot Operating System), the modular approach of OpenLMD pursues a direct deployment of new algorithms beyond the state-of-the-art in real facilities, fixing common interoperability and standardization issues. Moreover, it takes advantage from open source and most advanced robotics, vision, and machine learning research.]]>

OpenLMD (http://openlmd.github.io/) is a set of software components provided to demonstrate last advances on laser processing control systems. Built on ROS (Robot Operating System), the modular approach of OpenLMD pursues a direct deployment of new algorithms beyond the state-of-the-art in real facilities, fixing common interoperability and standardization issues. Moreover, it takes advantage from open source and most advanced robotics, vision, and machine learning research.]]>
Mon, 31 Oct 2016 16:36:29 GMT /slideshow/openlmd-open-laser-metal-deposition/67929835 JorgeRodrguezArajo@slideshare.net(JorgeRodrguezArajo) OpenLMD, Open Laser Metal Deposition JorgeRodrguezArajo OpenLMD (http://openlmd.github.io/) is a set of software components provided to demonstrate last advances on laser processing control systems. Built on ROS (Robot Operating System), the modular approach of OpenLMD pursues a direct deployment of new algorithms beyond the state-of-the-art in real facilities, fixing common interoperability and standardization issues. Moreover, it takes advantage from open source and most advanced robotics, vision, and machine learning research. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/openlmdpresentation-161031163629-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> OpenLMD (http://openlmd.github.io/) is a set of software components provided to demonstrate last advances on laser processing control systems. Built on ROS (Robot Operating System), the modular approach of OpenLMD pursues a direct deployment of new algorithms beyond the state-of-the-art in real facilities, fixing common interoperability and standardization issues. Moreover, it takes advantage from open source and most advanced robotics, vision, and machine learning research.
OpenLMD, Open Laser Metal Deposition from Jorge Rodr鱈guez Ara炭jo
]]>
2231 9 https://cdn.slidesharecdn.com/ss_thumbnails/openlmdpresentation-161031163629-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Workshop Galicia Machine Learning 2016 https://es.slideshare.net/slideshow/workshop-galicia-machine-learning-2016/67929608 wgml2016-161031163018
Los sistemas de producción demandan continuamente nuevos sistemas de control, predicción de fallos y detección de defectos que garanticen la calidad de los productos y mejoren la eficiencia de los procesos. Esta demanda, junto a la disponibilidad de entornos de computación más potentes está promoviendo el desarrollo de nuevas técnicas y sistemas basados en procesado de imagen y machine learning para la inspección y control de calidad en línea. Así, basado en el análisis de imágenes de electroluminiscencia [1], se ha desarrollado una solución capaz de discriminar y localizar el tipo de defecto existente en una celda solar fotovoltaica usando máquinas de soporte vectorial (SVM), que además automatiza el proceso de reparación basado en láser. Lo que permite una significativa reducción de los desperdicios de producción mediante la utilización de celdas reparadas para la construcción de módulos a medida. Por otro lado, mediante el análisis de imágenes térmicas de alta velocidad (obtenidas mediante sensores de imagen de PbSe no refrigerados en el rango MWIR) [2], se ha desarrollado una solución para la detección y clasificación de defectos en procesos de soldadura láser para automoción. La cual aplica el análisis de componentes principales (PCA) para la reducción dimensional de los datos del baño fundido, permitiendo el funcionamiento en línea (a una frecuencia de 1 kHz) y evitando posteriores inspecciones.]]>

Los sistemas de producción demandan continuamente nuevos sistemas de control, predicción de fallos y detección de defectos que garanticen la calidad de los productos y mejoren la eficiencia de los procesos. Esta demanda, junto a la disponibilidad de entornos de computación más potentes está promoviendo el desarrollo de nuevas técnicas y sistemas basados en procesado de imagen y machine learning para la inspección y control de calidad en línea. Así, basado en el análisis de imágenes de electroluminiscencia [1], se ha desarrollado una solución capaz de discriminar y localizar el tipo de defecto existente en una celda solar fotovoltaica usando máquinas de soporte vectorial (SVM), que además automatiza el proceso de reparación basado en láser. Lo que permite una significativa reducción de los desperdicios de producción mediante la utilización de celdas reparadas para la construcción de módulos a medida. Por otro lado, mediante el análisis de imágenes térmicas de alta velocidad (obtenidas mediante sensores de imagen de PbSe no refrigerados en el rango MWIR) [2], se ha desarrollado una solución para la detección y clasificación de defectos en procesos de soldadura láser para automoción. La cual aplica el análisis de componentes principales (PCA) para la reducción dimensional de los datos del baño fundido, permitiendo el funcionamiento en línea (a una frecuencia de 1 kHz) y evitando posteriores inspecciones.]]>
Mon, 31 Oct 2016 16:30:18 GMT https://es.slideshare.net/slideshow/workshop-galicia-machine-learning-2016/67929608 JorgeRodrguezArajo@slideshare.net(JorgeRodrguezArajo) Workshop Galicia Machine Learning 2016 JorgeRodrguezArajo Los sistemas de producción demandan continuamente nuevos sistemas de control, predicción de fallos y detección de defectos que garanticen la calidad de los productos y mejoren la eficiencia de los procesos. Esta demanda, junto a la disponibilidad de entornos de computación más potentes está promoviendo el desarrollo de nuevas técnicas y sistemas basados en procesado de imagen y machine learning para la inspección y control de calidad en línea. Así, basado en el análisis de imágenes de electroluminiscencia [1], se ha desarrollado una solución capaz de discriminar y localizar el tipo de defecto existente en una celda solar fotovoltaica usando máquinas de soporte vectorial (SVM), que además automatiza el proceso de reparación basado en láser. Lo que permite una significativa reducción de los desperdicios de producción mediante la utilización de celdas reparadas para la construcción de módulos a medida. Por otro lado, mediante el análisis de imágenes térmicas de alta velocidad (obtenidas mediante sensores de imagen de PbSe no refrigerados en el rango MWIR) [2], se ha desarrollado una solución para la detección y clasificación de defectos en procesos de soldadura láser para automoción. La cual aplica el análisis de componentes principales (PCA) para la reducción dimensional de los datos del baño fundido, permitiendo el funcionamiento en línea (a una frecuencia de 1 kHz) y evitando posteriores inspecciones. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/wgml2016-161031163018-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Los sistemas de producción demandan continuamente nuevos sistemas de control, predicción de fallos y detección de defectos que garanticen la calidad de los productos y mejoren la eficiencia de los procesos. Esta demanda, junto a la disponibilidad de entornos de computación más potentes está promoviendo el desarrollo de nuevas técnicas y sistemas basados en procesado de imagen y machine learning para la inspección y control de calidad en línea. Así, basado en el análisis de imágenes de electroluminiscencia [1], se ha desarrollado una solución capaz de discriminar y localizar el tipo de defecto existente en una celda solar fotovoltaica usando máquinas de soporte vectorial (SVM), que además automatiza el proceso de reparación basado en láser. Lo que permite una significativa reducción de los desperdicios de producción mediante la utilización de celdas reparadas para la construcción de módulos a medida. Por otro lado, mediante el análisis de imágenes térmicas de alta velocidad (obtenidas mediante sensores de imagen de PbSe no refrigerados en el rango MWIR) [2], se ha desarrollado una solución para la detección y clasificación de defectos en procesos de soldadura láser para automoción. La cual aplica el análisis de componentes principales (PCA) para la reducción dimensional de los datos del baño fundido, permitiendo el funcionamiento en línea (a una frecuencia de 1 kHz) y evitando posteriores inspecciones.
from Jorge Rodr鱈guez Ara炭jo
]]>
375 3 https://cdn.slidesharecdn.com/ss_thumbnails/wgml2016-161031163018-thumbnail.jpg?width=120&height=120&fit=bounds presentation 000000 http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Repairing of Photovoltaic Wafers and Solar Cells by Laser Enabled Silicon Processing /JorgeRodrguezArajo/repairing-of-photovoltaic-wafers-and-solar-cells-by-laser-enabled-silicon-processing final1-reptile-286955-final-publishable-summary-160511151038
Laser-based technique for automatic repair of defective silicon cells and wafers, within the manufacturing line.]]>

Laser-based technique for automatic repair of defective silicon cells and wafers, within the manufacturing line.]]>
Wed, 11 May 2016 15:10:38 GMT /JorgeRodrguezArajo/repairing-of-photovoltaic-wafers-and-solar-cells-by-laser-enabled-silicon-processing JorgeRodrguezArajo@slideshare.net(JorgeRodrguezArajo) Repairing of Photovoltaic Wafers and Solar Cells by Laser Enabled Silicon Processing JorgeRodrguezArajo Laser-based technique for automatic repair of defective silicon cells and wafers, within the manufacturing line. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/final1-reptile-286955-final-publishable-summary-160511151038-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Laser-based technique for automatic repair of defective silicon cells and wafers, within the manufacturing line.
Repairing of Photovoltaic Wafers and Solar Cells by Laser Enabled Silicon Processing from Jorge Rodr鱈guez Ara炭jo
]]>
316 6 https://cdn.slidesharecdn.com/ss_thumbnails/final1-reptile-286955-final-publishable-summary-160511151038-thumbnail.jpg?width=120&height=120&fit=bounds document Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Adaptive Laser Cladding System with Variable Spot Sizes /JorgeRodrguezArajo/adaptive-laser-cladding-system-with-variable-spot-sizes final1-alas-315614-publishable-summary-160507230637
Adaptive laser cladding head with variable spot size focused on the repairing of complex geometries combining heat accumulation and beam size control.]]>

Adaptive laser cladding head with variable spot size focused on the repairing of complex geometries combining heat accumulation and beam size control.]]>
Sat, 07 May 2016 23:06:37 GMT /JorgeRodrguezArajo/adaptive-laser-cladding-system-with-variable-spot-sizes JorgeRodrguezArajo@slideshare.net(JorgeRodrguezArajo) Adaptive Laser Cladding System with Variable Spot Sizes JorgeRodrguezArajo Adaptive laser cladding head with variable spot size focused on the repairing of complex geometries combining heat accumulation and beam size control. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/final1-alas-315614-publishable-summary-160507230637-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Adaptive laser cladding head with variable spot size focused on the repairing of complex geometries combining heat accumulation and beam size control.
Adaptive Laser Cladding System with Variable Spot Sizes from Jorge Rodr鱈guez Ara炭jo
]]>
770 9 https://cdn.slidesharecdn.com/ss_thumbnails/final1-alas-315614-publishable-summary-160507230637-thumbnail.jpg?width=120&height=120&fit=bounds document Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Automated in-line defect classification and localization in solar cells for laser-based repair /slideshow/automated-inline-defect-classification-and-localization-in-solar-cells-for-laserbased-repair/61718088 repeye-160505180601
Defective crystalline silicon solar cells may be repaired using laser-based techniques if the problem is properly identified and characterized. This paper presents a novel system for the automation of solar cells repair that carries out the following tasks: 1) It detects and localizes cracks and shunts in solar cells from electroluminescence images; 2) It takes a decision on the laser process to repair faulty cells; 3) It automates the operation of a laser machine for processing solar cells. Regarding the analysis of electroluminescence images of solar cells, the proposed solution is able to discriminate the type of defect, which means a step-forward compared to state-of-the-art approaches. Moreover, it is to our knowledge the first solution that takes the results of such analysis to automate a process of laser-based repair. The proposed system paves the way for waste reduction in the production of solar cells by using repaired cells in custom-made solar modules.]]>

Defective crystalline silicon solar cells may be repaired using laser-based techniques if the problem is properly identified and characterized. This paper presents a novel system for the automation of solar cells repair that carries out the following tasks: 1) It detects and localizes cracks and shunts in solar cells from electroluminescence images; 2) It takes a decision on the laser process to repair faulty cells; 3) It automates the operation of a laser machine for processing solar cells. Regarding the analysis of electroluminescence images of solar cells, the proposed solution is able to discriminate the type of defect, which means a step-forward compared to state-of-the-art approaches. Moreover, it is to our knowledge the first solution that takes the results of such analysis to automate a process of laser-based repair. The proposed system paves the way for waste reduction in the production of solar cells by using repaired cells in custom-made solar modules.]]>
Thu, 05 May 2016 18:06:01 GMT /slideshow/automated-inline-defect-classification-and-localization-in-solar-cells-for-laserbased-repair/61718088 JorgeRodrguezArajo@slideshare.net(JorgeRodrguezArajo) Automated in-line defect classification and localization in solar cells for laser-based repair JorgeRodrguezArajo Defective crystalline silicon solar cells may be repaired using laser-based techniques if the problem is properly identified and characterized. This paper presents a novel system for the automation of solar cells repair that carries out the following tasks: 1) It detects and localizes cracks and shunts in solar cells from electroluminescence images; 2) It takes a decision on the laser process to repair faulty cells; 3) It automates the operation of a laser machine for processing solar cells. Regarding the analysis of electroluminescence images of solar cells, the proposed solution is able to discriminate the type of defect, which means a step-forward compared to state-of-the-art approaches. Moreover, it is to our knowledge the first solution that takes the results of such analysis to automate a process of laser-based repair. The proposed system paves the way for waste reduction in the production of solar cells by using repaired cells in custom-made solar modules. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/repeye-160505180601-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Defective crystalline silicon solar cells may be repaired using laser-based techniques if the problem is properly identified and characterized. This paper presents a novel system for the automation of solar cells repair that carries out the following tasks: 1) It detects and localizes cracks and shunts in solar cells from electroluminescence images; 2) It takes a decision on the laser process to repair faulty cells; 3) It automates the operation of a laser machine for processing solar cells. Regarding the analysis of electroluminescence images of solar cells, the proposed solution is able to discriminate the type of defect, which means a step-forward compared to state-of-the-art approaches. Moreover, it is to our knowledge the first solution that takes the results of such analysis to automate a process of laser-based repair. The proposed system paves the way for waste reduction in the production of solar cells by using repaired cells in custom-made solar modules.
Automated in-line defect classification and localization in solar cells for laser-based repair from Jorge Rodr鱈guez Ara炭jo
]]>
798 5 https://cdn.slidesharecdn.com/ss_thumbnails/repeye-160505180601-thumbnail.jpg?width=120&height=120&fit=bounds presentation 000000 http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
https://cdn.slidesharecdn.com/profile-photo-JorgeRodrguezArajo-48x48.jpg?cb=1546204031 www.abraiasoftware.com https://cdn.slidesharecdn.com/ss_thumbnails/gazehits-170522101452-thumbnail.jpg?width=320&height=320&fit=bounds JorgeRodrguezArajo/visual-perception-analysis-with-gazehits-76203529 Visual Perception Anal... https://cdn.slidesharecdn.com/ss_thumbnails/openlmd-170215075716-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/openlmd-multimodal-monitoring-and-control-of-lmd-processing/72168023 OpenLMD, Multimodal Mo... https://cdn.slidesharecdn.com/ss_thumbnails/openlmdpresentation-161031163629-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/openlmd-open-laser-metal-deposition/67929835 OpenLMD, Open Laser Me...