ºÝºÝߣshows by User: askroll / http://www.slideshare.net/images/logo.gif ºÝºÝߣshows by User: askroll / Tue, 12 Nov 2013 17:53:20 GMT ºÝºÝߣShare feed for ºÝºÝߣshows by User: askroll Microsoft power point curso-2006_sesion2_kohonen https://es.slideshare.net/slideshow/microsoft-power-point-curso2006sesion2kohonen/28177440 microsoftpowerpoint-curso2006sesion2kohonen-131112175320-phpapp02
]]>

]]>
Tue, 12 Nov 2013 17:53:20 GMT https://es.slideshare.net/slideshow/microsoft-power-point-curso2006sesion2kohonen/28177440 askroll@slideshare.net(askroll) Microsoft power point curso-2006_sesion2_kohonen askroll <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/microsoftpowerpoint-curso2006sesion2kohonen-131112175320-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
from askroll
]]>
617 2 https://cdn.slidesharecdn.com/ss_thumbnails/microsoftpowerpoint-curso2006sesion2kohonen-131112175320-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Migue final presentation_v28 /slideshow/migue-final-presentationv28/12726838 miguefinalpresentationv28-120428085729-phpapp02
Bio-inspired computational techniquesapplied to the clustering and visualization of spatio-temporal geospatial data]]>

Bio-inspired computational techniquesapplied to the clustering and visualization of spatio-temporal geospatial data]]>
Sat, 28 Apr 2012 08:57:27 GMT /slideshow/migue-final-presentationv28/12726838 askroll@slideshare.net(askroll) Migue final presentation_v28 askroll Bio-inspired computational techniques�applied to the clustering and visualization of spatio-temporal geospatial data <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/miguefinalpresentationv28-120428085729-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Bio-inspired computational techniques�applied to the clustering and visualization of spatio-temporal geospatial data
Migue final presentation_v28 from askroll
]]>
493 4 https://cdn.slidesharecdn.com/ss_thumbnails/miguefinalpresentationv28-120428085729-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds presentation White http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Self-organizing maps - Tutorial /slideshow/unsupervised-learning/7797822 unsupervisedlearning-110501192306-phpapp01
Self-organizing maps tutorial]]>

Self-organizing maps tutorial]]>
Sun, 01 May 2011 19:23:04 GMT /slideshow/unsupervised-learning/7797822 askroll@slideshare.net(askroll) Self-organizing maps - Tutorial askroll Self-organizing maps tutorial <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/unsupervisedlearning-110501192306-phpapp01-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Self-organizing maps tutorial
Self-organizing maps - Tutorial from askroll
]]>
11158 6 https://cdn.slidesharecdn.com/ss_thumbnails/unsupervisedlearning-110501192306-phpapp01-thumbnail.jpg?width=120&height=120&fit=bounds presentation White http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Algortimos bio-inspirados para clustering y visualizacion de datos geoespaciales /slideshow/bioinspired-computational-techniques-applied-to-the-analysis-and-visualization-of-spatiotemporal-cluster-dynamics/7797633 20110119mbarreto-110501185128-phpapp02
]]>

]]>
Sun, 01 May 2011 18:51:24 GMT /slideshow/bioinspired-computational-techniques-applied-to-the-analysis-and-visualization-of-spatiotemporal-cluster-dynamics/7797633 askroll@slideshare.net(askroll) Algortimos bio-inspirados para clustering y visualizacion de datos geoespaciales askroll <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/20110119mbarreto-110501185128-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
Algortimos bio-inspirados para clustering y visualizacion de datos geoespaciales from askroll
]]>
506 2 https://cdn.slidesharecdn.com/ss_thumbnails/20110119mbarreto-110501185128-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Bio inspired computational techniques applied to the analysis and visualization of spatio-temporal cluster dynamics /slideshow/bio-inspired-computational-techniques-applied-to-the-analysis-and-visualization-of-spatiotemporal-cluster-dynamics/7797154 bio-inspiredcomputationaltechniquesappliedtotheanalysisandvisualizationofspatio-temporalclusterdynamics-110501181349-phpapp02
]]>

]]>
Sun, 01 May 2011 18:13:48 GMT /slideshow/bio-inspired-computational-techniques-applied-to-the-analysis-and-visualization-of-spatiotemporal-cluster-dynamics/7797154 askroll@slideshare.net(askroll) Bio inspired computational techniques applied to the analysis and visualization of spatio-temporal cluster dynamics askroll <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/bio-inspiredcomputationaltechniquesappliedtotheanalysisandvisualizationofspatio-temporalclusterdynamics-110501181349-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
Bio inspired computational techniques applied to the analysis and visualization of spatio-temporal cluster dynamics from askroll
]]>
943 5 https://cdn.slidesharecdn.com/ss_thumbnails/bio-inspiredcomputationaltechniquesappliedtotheanalysisandvisualizationofspatio-temporalclusterdynamics-110501181349-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Fuzzy Growing Hierarchical Self-organizing Networks /slideshow/fghson-present-icann2008/7797040 fghsonpresenticann2008-110501175147-phpapp01
Hierarchical Self-Organizing Networks are used to reveal the topology and structure of datasets. Those structures create crisp partitions of the dataset producing branches or prototype vectors that represent groups of data with similar characteristics. However, when observations can be represented by several prototypes with similar accuracy, crisp partitions are forced to classify it in just one group, so crisp divisions usually lose information about the real dataset structure. To deal with this challenge we propose the Fuzzy Growing Hierarchical Self-Organizing Networks (FGHSON). FGHSON are adaptive networks which are able to reflect the underlying structure of the dataset, in a hierarchical fuzzy way. These networks grow by using three variables which govern the membership degree of data observations to its prototype vectors and the quality of the network representation. The resulting structure allows to represent heterogeneous groups and those that present similar membership degree to several clusters]]>

Hierarchical Self-Organizing Networks are used to reveal the topology and structure of datasets. Those structures create crisp partitions of the dataset producing branches or prototype vectors that represent groups of data with similar characteristics. However, when observations can be represented by several prototypes with similar accuracy, crisp partitions are forced to classify it in just one group, so crisp divisions usually lose information about the real dataset structure. To deal with this challenge we propose the Fuzzy Growing Hierarchical Self-Organizing Networks (FGHSON). FGHSON are adaptive networks which are able to reflect the underlying structure of the dataset, in a hierarchical fuzzy way. These networks grow by using three variables which govern the membership degree of data observations to its prototype vectors and the quality of the network representation. The resulting structure allows to represent heterogeneous groups and those that present similar membership degree to several clusters]]>
Sun, 01 May 2011 17:51:44 GMT /slideshow/fghson-present-icann2008/7797040 askroll@slideshare.net(askroll) Fuzzy Growing Hierarchical Self-organizing Networks askroll Hierarchical Self-Organizing Networks are used to reveal the topology and structure of datasets. Those structures create crisp partitions of the dataset producing branches or prototype vectors that represent groups of data with similar characteristics. However, when observations can be represented by several prototypes with similar accuracy, crisp partitions are forced to classify it in just one group, so crisp divisions usually lose information about the real dataset structure. To deal with this challenge we propose the Fuzzy Growing Hierarchical Self-Organizing Networks (FGHSON). FGHSON are adaptive networks which are able to reflect the underlying structure of the dataset, in a hierarchical fuzzy way. These networks grow by using three variables which govern the membership degree of data observations to its prototype vectors and the quality of the network representation. The resulting structure allows to represent heterogeneous groups and those that present similar membership degree to several clusters <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/fghsonpresenticann2008-110501175147-phpapp01-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Hierarchical Self-Organizing Networks are used to reveal the topology and structure of datasets. Those structures create crisp partitions of the dataset producing branches or prototype vectors that represent groups of data with similar characteristics. However, when observations can be represented by several prototypes with similar accuracy, crisp partitions are forced to classify it in just one group, so crisp divisions usually lose information about the real dataset structure. To deal with this challenge we propose the Fuzzy Growing Hierarchical Self-Organizing Networks (FGHSON). FGHSON are adaptive networks which are able to reflect the underlying structure of the dataset, in a hierarchical fuzzy way. These networks grow by using three variables which govern the membership degree of data observations to its prototype vectors and the quality of the network representation. The resulting structure allows to represent heterogeneous groups and those that present similar membership degree to several clusters
Fuzzy Growing Hierarchical Self-organizing Networks from askroll
]]>
1059 5 https://cdn.slidesharecdn.com/ss_thumbnails/fghsonpresenticann2008-110501175147-phpapp01-thumbnail.jpg?width=120&height=120&fit=bounds presentation White http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Improving the correlation hunting in a large�quantity of SOM component planes /slideshow/improving-the-correlation-hunting-in-a-largequantity-of-som-component-planes-presentation/615486 icann2007barretosanz004-1222261588295115-9
]]>

]]>
Wed, 24 Sep 2008 06:06:47 GMT /slideshow/improving-the-correlation-hunting-in-a-largequantity-of-som-component-planes-presentation/615486 askroll@slideshare.net(askroll) Improving the correlation hunting in a large�quantity of SOM component planes askroll <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/icann2007barretosanz004-1222261588295115-9-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
Improving the correlation hunting in a large quantity of SOM component planes from askroll
]]>
1014 2 https://cdn.slidesharecdn.com/ss_thumbnails/icann2007barretosanz004-1222261588295115-9-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Classification of similar productivity zones in the sugar cane culture using clustering of SOM component planes based on the SOM distance matrix /slideshow/classification-of-similar-productivity-zones-in-the-sugar-cane-culture-using-clustering-of-som-component-planes-based-on-the-som-distance-matrix-presentation/615442 wsom2007barretomigueleventoshomlogos-1222259529498780-8
]]>

]]>
Wed, 24 Sep 2008 05:33:10 GMT /slideshow/classification-of-similar-productivity-zones-in-the-sugar-cane-culture-using-clustering-of-som-component-planes-based-on-the-som-distance-matrix-presentation/615442 askroll@slideshare.net(askroll) Classification of similar productivity zones in the sugar cane culture using clustering of SOM component planes based on the SOM distance matrix askroll <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/wsom2007barretomigueleventoshomlogos-1222259529498780-8-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
Classification of similar productivity zones in the sugar cane culture using clustering of SOM component planes based on the SOM distance matrix from askroll
]]>
888 4 https://cdn.slidesharecdn.com/ss_thumbnails/wsom2007barretomigueleventoshomlogos-1222259529498780-8-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Mapas de Kohonen como una herramienta visual de apoyo al soporte de decisiones en agroecología https://es.slideshare.net/slideshow/mapas-de-kohonen-como-una-herramienta-visual-de-apoyo-al-soporte-de-decisiones-en-agroecologa-presentation/613098 miguelcenicaajun2007-component-planes-con-variables-de-manejo-1222162400227071-8
]]>

]]>
Tue, 23 Sep 2008 02:33:50 GMT https://es.slideshare.net/slideshow/mapas-de-kohonen-como-una-herramienta-visual-de-apoyo-al-soporte-de-decisiones-en-agroecologa-presentation/613098 askroll@slideshare.net(askroll) Mapas de Kohonen como una herramienta visual de apoyo al soporte de decisiones en agroecología askroll <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/miguelcenicaajun2007-component-planes-con-variables-de-manejo-1222162400227071-8-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
from askroll
]]>
1014 3 https://cdn.slidesharecdn.com/ss_thumbnails/miguelcenicaajun2007-component-planes-con-variables-de-manejo-1222162400227071-8-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Curso 2006 Sesion 1 Kohonen https://es.slideshare.net/slideshow/curso-2006-sesion-1-kohonen-presentation/613026 curso2006sesion1kohonen-1222159975470996-9
]]>

]]>
Tue, 23 Sep 2008 01:54:37 GMT https://es.slideshare.net/slideshow/curso-2006-sesion-1-kohonen-presentation/613026 askroll@slideshare.net(askroll) Curso 2006 Sesion 1 Kohonen askroll <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/curso2006sesion1kohonen-1222159975470996-9-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
from askroll
]]>
1207 2 https://cdn.slidesharecdn.com/ss_thumbnails/curso2006sesion1kohonen-1222159975470996-9-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
The COCH project /slideshow/the-coch-project-presentation/613012 coch2-1222159801938036-9
]]>

]]>
Tue, 23 Sep 2008 01:49:09 GMT /slideshow/the-coch-project-presentation/613012 askroll@slideshare.net(askroll) The COCH project askroll <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/coch2-1222159801938036-9-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
The COCH project from askroll
]]>
387 2 https://cdn.slidesharecdn.com/ss_thumbnails/coch2-1222159801938036-9-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Bio-inspired techniques and their application to precision agriculture (Andres Perez-Uribe / Eduardo Sanchez) /slideshow/bioinspired-techniques-and-their-application-to-precision-agriculture-andres-perezuribe-eduardo-sanchez-presentation/604730 charlaandres-1221739082122849-9
"Bio-inspired techniques and their application to precision agriculture" Bio-inspired computational techniques capable of producing complex models to predict/describe the site-specific behavior of given crops]]>

"Bio-inspired techniques and their application to precision agriculture" Bio-inspired computational techniques capable of producing complex models to predict/describe the site-specific behavior of given crops]]>
Thu, 18 Sep 2008 05:05:29 GMT /slideshow/bioinspired-techniques-and-their-application-to-precision-agriculture-andres-perezuribe-eduardo-sanchez-presentation/604730 askroll@slideshare.net(askroll) Bio-inspired techniques and their application to precision agriculture (Andres Perez-Uribe / Eduardo Sanchez) askroll "Bio-inspired techniques and their application to precision agriculture" Bio-inspired computational techniques capable of producing complex models to predict/describe the site-specific behavior of given crops <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/charlaandres-1221739082122849-9-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> &quot;Bio-inspired techniques and their application to precision agriculture&quot; Bio-inspired computational techniques capable of producing complex models to predict/describe the site-specific behavior of given crops
Bio-inspired techniques and their application to precision agriculture (Andres Perez-Uribe / Eduardo Sanchez) from askroll
]]>
1339 2 https://cdn.slidesharecdn.com/ss_thumbnails/charlaandres-1221739082122849-9-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
https://cdn.slidesharecdn.com/profile-photo-askroll-48x48.jpg?cb=1682070462 https://cdn.slidesharecdn.com/ss_thumbnails/microsoftpowerpoint-curso2006sesion2kohonen-131112175320-phpapp02-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/microsoft-power-point-curso2006sesion2kohonen/28177440 Microsoft power point ... https://cdn.slidesharecdn.com/ss_thumbnails/miguefinalpresentationv28-120428085729-phpapp02-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/migue-final-presentationv28/12726838 Migue final presentati... https://cdn.slidesharecdn.com/ss_thumbnails/unsupervisedlearning-110501192306-phpapp01-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/unsupervised-learning/7797822 Self-organizing maps -...