際際滷shows by User: ochanism / http://www.slideshare.net/images/logo.gif 際際滷shows by User: ochanism / Sat, 07 Nov 2015 02:44:56 GMT 際際滷Share feed for 際際滷shows by User: ochanism Extending Spark Streaming to Support Complex Event Processing /slideshow/extending-spark-streaming-to-support-complex-event-processing/54843307 spark-cep-151107024456-lva1-app6891
In this talk, we introduce the extensions of Spark Streaming to support (1) SQL-based query processing and (2) elastic-seamless resource allocation. First, we explain the methods of supporting window queries and query chains. As we know, last year, Grace Huang and Jerry Shao introduced the concept of StreamSQL that can process streaming data with SQL-like queries by adapting SparkSQL to Spark Streaming. However, we made advances in supporting complex event processing (CEP) based on their efforts. In detail, we implemented the sliding window concept to support a time-based streaming data processing at the SQL level. Here, to reduce the aggregation time of large windows, we generate an efficient query plan that computes the partial results by evaluating only the data entering or leaving the window and then gets the current result by merging the previous one and the partial ones. Next, to support query chains, we made the result of a query over streaming data be a table by adding the insert into query. That is, it allows us to apply stream queries to the results of other ones. Second, we explain the methods of allocating resources to streaming applications dynamically, which enable the applications to meet a given deadline. As the rate of incoming events varies over time, resources allocated to applications need to be adjusted for high resource utilization. However, the current Spark's resource allocation features are not suitable for streaming applications. That is, the resources allocated will not be freed when new data are arriving continuously to the streaming applications even though the quantity of the new ones is very small. In order to resolve the problem, we consider their resource utilization. If the utilization is low, we choose victim nodes to be killed. Then, we do not feed new data into the victims to prevent a useless recovery issuing when they are killed. Accordingly, we can scale-in/-out the resources seamlessly.]]>

In this talk, we introduce the extensions of Spark Streaming to support (1) SQL-based query processing and (2) elastic-seamless resource allocation. First, we explain the methods of supporting window queries and query chains. As we know, last year, Grace Huang and Jerry Shao introduced the concept of StreamSQL that can process streaming data with SQL-like queries by adapting SparkSQL to Spark Streaming. However, we made advances in supporting complex event processing (CEP) based on their efforts. In detail, we implemented the sliding window concept to support a time-based streaming data processing at the SQL level. Here, to reduce the aggregation time of large windows, we generate an efficient query plan that computes the partial results by evaluating only the data entering or leaving the window and then gets the current result by merging the previous one and the partial ones. Next, to support query chains, we made the result of a query over streaming data be a table by adding the insert into query. That is, it allows us to apply stream queries to the results of other ones. Second, we explain the methods of allocating resources to streaming applications dynamically, which enable the applications to meet a given deadline. As the rate of incoming events varies over time, resources allocated to applications need to be adjusted for high resource utilization. However, the current Spark's resource allocation features are not suitable for streaming applications. That is, the resources allocated will not be freed when new data are arriving continuously to the streaming applications even though the quantity of the new ones is very small. In order to resolve the problem, we consider their resource utilization. If the utilization is low, we choose victim nodes to be killed. Then, we do not feed new data into the victims to prevent a useless recovery issuing when they are killed. Accordingly, we can scale-in/-out the resources seamlessly.]]>
Sat, 07 Nov 2015 02:44:56 GMT /slideshow/extending-spark-streaming-to-support-complex-event-processing/54843307 ochanism@slideshare.net(ochanism) Extending Spark Streaming to Support Complex Event Processing ochanism In this talk, we introduce the extensions of Spark Streaming to support (1) SQL-based query processing and (2) elastic-seamless resource allocation. First, we explain the methods of supporting window queries and query chains. As we know, last year, Grace Huang and Jerry Shao introduced the concept of StreamSQL that can process streaming data with SQL-like queries by adapting SparkSQL to Spark Streaming. However, we made advances in supporting complex event processing (CEP) based on their efforts. In detail, we implemented the sliding window concept to support a time-based streaming data processing at the SQL level. Here, to reduce the aggregation time of large windows, we generate an efficient query plan that computes the partial results by evaluating only the data entering or leaving the window and then gets the current result by merging the previous one and the partial ones. Next, to support query chains, we made the result of a query over streaming data be a table by adding the insert into query. That is, it allows us to apply stream queries to the results of other ones. Second, we explain the methods of allocating resources to streaming applications dynamically, which enable the applications to meet a given deadline. As the rate of incoming events varies over time, resources allocated to applications need to be adjusted for high resource utilization. However, the current Spark's resource allocation features are not suitable for streaming applications. That is, the resources allocated will not be freed when new data are arriving continuously to the streaming applications even though the quantity of the new ones is very small. In order to resolve the problem, we consider their resource utilization. If the utilization is low, we choose victim nodes to be killed. Then, we do not feed new data into the victims to prevent a useless recovery issuing when they are killed. Accordingly, we can scale-in/-out the resources seamlessly. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/spark-cep-151107024456-lva1-app6891-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> In this talk, we introduce the extensions of Spark Streaming to support (1) SQL-based query processing and (2) elastic-seamless resource allocation. First, we explain the methods of supporting window queries and query chains. As we know, last year, Grace Huang and Jerry Shao introduced the concept of StreamSQL that can process streaming data with SQL-like queries by adapting SparkSQL to Spark Streaming. However, we made advances in supporting complex event processing (CEP) based on their efforts. In detail, we implemented the sliding window concept to support a time-based streaming data processing at the SQL level. Here, to reduce the aggregation time of large windows, we generate an efficient query plan that computes the partial results by evaluating only the data entering or leaving the window and then gets the current result by merging the previous one and the partial ones. Next, to support query chains, we made the result of a query over streaming data be a table by adding the insert into query. That is, it allows us to apply stream queries to the results of other ones. Second, we explain the methods of allocating resources to streaming applications dynamically, which enable the applications to meet a given deadline. As the rate of incoming events varies over time, resources allocated to applications need to be adjusted for high resource utilization. However, the current Spark&#39;s resource allocation features are not suitable for streaming applications. That is, the resources allocated will not be freed when new data are arriving continuously to the streaming applications even though the quantity of the new ones is very small. In order to resolve the problem, we consider their resource utilization. If the utilization is low, we choose victim nodes to be killed. Then, we do not feed new data into the victims to prevent a useless recovery issuing when they are killed. Accordingly, we can scale-in/-out the resources seamlessly.
Extending Spark Streaming to Support Complex Event Processing from Oh Chan Kwon
]]>
5488 8 https://cdn.slidesharecdn.com/ss_thumbnails/spark-cep-151107024456-lva1-app6891-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
https://cdn.slidesharecdn.com/profile-photo-ochanism-48x48.jpg?cb=1704439960