際際滷shows by User: sitake / http://www.slideshare.net/images/logo.gif 際際滷shows by User: sitake / Sun, 26 Apr 2020 13:32:09 GMT 際際滷Share feed for 際際滷shows by User: sitake Practical Data Science Use-cases in Retail & eCommerce /slideshow/practical-data-science-usecases-in-retail-ecommerce/232665471 presentdatacube-200426133209
This slide present Data Analytics concept. Topics are level of analytics, CRISP-DM, data science use cases e.g., customer segmentation, churn prediction, product recommendation, demand forecasting]]>

This slide present Data Analytics concept. Topics are level of analytics, CRISP-DM, data science use cases e.g., customer segmentation, churn prediction, product recommendation, demand forecasting]]>
Sun, 26 Apr 2020 13:32:09 GMT /slideshow/practical-data-science-usecases-in-retail-ecommerce/232665471 sitake@slideshare.net(sitake) Practical Data Science Use-cases in Retail & eCommerce sitake This slide present Data Analytics concept. Topics are level of analytics, CRISP-DM, data science use cases e.g., customer segmentation, churn prediction, product recommendation, demand forecasting <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/presentdatacube-200426133209-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide present Data Analytics concept. Topics are level of analytics, CRISP-DM, data science use cases e.g., customer segmentation, churn prediction, product recommendation, demand forecasting
Practical Data Science Use-cases in Retail & eCommerce from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
2749 0 https://cdn.slidesharecdn.com/ss_thumbnails/presentdatacube-200426133209-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
First Step to Big Data /slideshow/first-step-to-big-data/232496150 presentationeakasit-200423104948
This slide present Big Data concepts.]]>

This slide present Big Data concepts.]]>
Thu, 23 Apr 2020 10:49:48 GMT /slideshow/first-step-to-big-data/232496150 sitake@slideshare.net(sitake) First Step to Big Data sitake This slide present Big Data concepts. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/presentationeakasit-200423104948-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide present Big Data concepts.
First Step to Big Data from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
3213 0 https://cdn.slidesharecdn.com/ss_thumbnails/presentationeakasit-200423104948-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Introduction to Big Data Technologies /slideshow/introduction-to-big-data-technologies-149107634/149107634 introductiontobigdata-190609035858
Part 1: Introduction to Big Data Part 2: Introduction to NoSQL Part 3: Introduction to MapReduce and Hadoop Part 4: Introduction to Hive, HBase and Sqoop]]>

Part 1: Introduction to Big Data Part 2: Introduction to NoSQL Part 3: Introduction to MapReduce and Hadoop Part 4: Introduction to Hive, HBase and Sqoop]]>
Sun, 09 Jun 2019 03:58:58 GMT /slideshow/introduction-to-big-data-technologies-149107634/149107634 sitake@slideshare.net(sitake) Introduction to Big Data Technologies sitake Part 1: Introduction to Big Data Part 2: Introduction to NoSQL Part 3: Introduction to MapReduce and Hadoop Part 4: Introduction to Hive, HBase and Sqoop <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/introductiontobigdata-190609035858-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Part 1: Introduction to Big Data Part 2: Introduction to NoSQL Part 3: Introduction to MapReduce and Hadoop Part 4: Introduction to Hive, HBase and Sqoop
Introduction to Big Data Technologies from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
2763 30 https://cdn.slidesharecdn.com/ss_thumbnails/introductiontobigdata-190609035858-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Introduction to Data Mining and Big Data Analytics /slideshow/introduction-to-data-mining-and-big-data-analytics-83368477/83368477 presentationeakasit-171205034149
This slides present concept of Data Mining and Big Data Analytics. The topices are: - Internet of Things (IoT) - Data Science/Mining applications - Data Science/Mining techniques including (1) Association, (2) Clustering, (3) Classification - CRISP-DM: Cross Industry Standard Process for Data Mining]]>

This slides present concept of Data Mining and Big Data Analytics. The topices are: - Internet of Things (IoT) - Data Science/Mining applications - Data Science/Mining techniques including (1) Association, (2) Clustering, (3) Classification - CRISP-DM: Cross Industry Standard Process for Data Mining]]>
Tue, 05 Dec 2017 03:41:49 GMT /slideshow/introduction-to-data-mining-and-big-data-analytics-83368477/83368477 sitake@slideshare.net(sitake) Introduction to Data Mining and Big Data Analytics sitake This slides present concept of Data Mining and Big Data Analytics. The topices are: - Internet of Things (IoT) - Data Science/Mining applications - Data Science/Mining techniques including (1) Association, (2) Clustering, (3) Classification - CRISP-DM: Cross Industry Standard Process for Data Mining <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/presentationeakasit-171205034149-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slides present concept of Data Mining and Big Data Analytics. The topices are: - Internet of Things (IoT) - Data Science/Mining applications - Data Science/Mining techniques including (1) Association, (2) Clustering, (3) Classification - CRISP-DM: Cross Industry Standard Process for Data Mining
Introduction to Data Mining and Big Data Analytics from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
74558 16 https://cdn.slidesharecdn.com/ss_thumbnails/presentationeakasit-171205034149-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Apply (Big) Data Analytics & Predictive Analytics to Business Application /slideshow/apply-big-data-analytics-predictive-analytics-to-business-application/80614962 applydataanalyticstobusinessapplication23sep2017-171009160523
This presentation described Big Data concept. Then it shows example of applications in Banking. The presenter is Dr. Tuangtong Wattarujeekrit in Big Data Analytics Day event.]]>

This presentation described Big Data concept. Then it shows example of applications in Banking. The presenter is Dr. Tuangtong Wattarujeekrit in Big Data Analytics Day event.]]>
Mon, 09 Oct 2017 16:05:22 GMT /slideshow/apply-big-data-analytics-predictive-analytics-to-business-application/80614962 sitake@slideshare.net(sitake) Apply (Big) Data Analytics & Predictive Analytics to Business Application sitake This presentation described Big Data concept. Then it shows example of applications in Banking. The presenter is Dr. Tuangtong Wattarujeekrit in Big Data Analytics Day event. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/applydataanalyticstobusinessapplication23sep2017-171009160523-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This presentation described Big Data concept. Then it shows example of applications in Banking. The presenter is Dr. Tuangtong Wattarujeekrit in Big Data Analytics Day event.
Apply (Big) Data Analytics & Predictive Analytics to Business Application from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
3887 7 https://cdn.slidesharecdn.com/ss_thumbnails/applydataanalyticstobusinessapplication23sep2017-171009160523-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Introduction to Predictive Analytics with case studies /slideshow/introduction-to-predictive-analytics-with-case-studies/77387814 presentnida-170630015823
This presentation show basic knowledge of Big Data and Predictive Analytics. ]]>

This presentation show basic knowledge of Big Data and Predictive Analytics. ]]>
Fri, 30 Jun 2017 01:58:23 GMT /slideshow/introduction-to-predictive-analytics-with-case-studies/77387814 sitake@slideshare.net(sitake) Introduction to Predictive Analytics with case studies sitake This presentation show basic knowledge of Big Data and Predictive Analytics. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/presentnida-170630015823-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This presentation show basic knowledge of Big Data and Predictive Analytics.
Introduction to Predictive Analytics with case studies from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
4454 7 https://cdn.slidesharecdn.com/ss_thumbnails/presentnida-170630015823-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Introduction to Data Mining and Big Data Analytics /slideshow/introduction-to-data-mining-and-big-data-analytics-70430643/70430643 introbigdataanalytics-161225134308
This slides present concept of Data Mining and Big Data Analytics.]]>

This slides present concept of Data Mining and Big Data Analytics.]]>
Sun, 25 Dec 2016 13:43:08 GMT /slideshow/introduction-to-data-mining-and-big-data-analytics-70430643/70430643 sitake@slideshare.net(sitake) Introduction to Data Mining and Big Data Analytics sitake This slides present concept of Data Mining and Big Data Analytics. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/introbigdataanalytics-161225134308-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slides present concept of Data Mining and Big Data Analytics.
Introduction to Data Mining and Big Data Analytics from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
43008 11 https://cdn.slidesharecdn.com/ss_thumbnails/introbigdataanalytics-161225134308-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Advanced Predictive Modeling with R and RapidMiner Studio 7 /slideshow/advanced-predictive-modeling-with-r-and-rapidminer-studio-7-63087832/63087832 advancedrapidminerpreview-160615095124
This is an example slide for Advanced course. In this course, attendant will learn how to use R and RapidMiner Studio 7. ]]>

This is an example slide for Advanced course. In this course, attendant will learn how to use R and RapidMiner Studio 7. ]]>
Wed, 15 Jun 2016 09:51:24 GMT /slideshow/advanced-predictive-modeling-with-r-and-rapidminer-studio-7-63087832/63087832 sitake@slideshare.net(sitake) Advanced Predictive Modeling with R and RapidMiner Studio 7 sitake This is an example slide for Advanced course. In this course, attendant will learn how to use R and RapidMiner Studio 7. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/advancedrapidminerpreview-160615095124-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This is an example slide for Advanced course. In this course, attendant will learn how to use R and RapidMiner Studio 7.
Advanced Predictive Modeling with R and RapidMiner Studio 7 from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
13357 7 https://cdn.slidesharecdn.com/ss_thumbnails/advancedrapidminerpreview-160615095124-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Predictive analytic-for-retail-business /slideshow/predictive-analyticforretailbusiness/62544998 predictive-analytic-for-retail-business-160530170459
This slide describes how to use Predictive Analytic for Retail Business.]]>

This slide describes how to use Predictive Analytic for Retail Business.]]>
Mon, 30 May 2016 17:04:59 GMT /slideshow/predictive-analyticforretailbusiness/62544998 sitake@slideshare.net(sitake) Predictive analytic-for-retail-business sitake This slide describes how to use Predictive Analytic for Retail Business. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/predictive-analytic-for-retail-business-160530170459-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide describes how to use Predictive Analytic for Retail Business.
Predictive analytic-for-retail-business from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
4330 8 https://cdn.slidesharecdn.com/ss_thumbnails/predictive-analytic-for-retail-business-160530170459-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Building Decision Tree model with numerical attributes /slideshow/building-decision-tree-model-with-numerical-attributes/58645004 decisiontreenumeric-160224071900
This presentation show method to build Decision Tree model with numerical attributes]]>

This presentation show method to build Decision Tree model with numerical attributes]]>
Wed, 24 Feb 2016 07:19:00 GMT /slideshow/building-decision-tree-model-with-numerical-attributes/58645004 sitake@slideshare.net(sitake) Building Decision Tree model with numerical attributes sitake This presentation show method to build Decision Tree model with numerical attributes <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/decisiontreenumeric-160224071900-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This presentation show method to build Decision Tree model with numerical attributes
Building Decision Tree model with numerical attributes from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
78025 10 https://cdn.slidesharecdn.com/ss_thumbnails/decisiontreenumeric-160224071900-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Data manipulation with RapidMiner Studio 7 /slideshow/data-manipulation-with-rapidminer-studio-7/57971931 datamanipulation11p-160207111450
This slide shows how to get data from MySQL and do a simple data manipulation using RapidMiner Studio 7]]>

This slide shows how to get data from MySQL and do a simple data manipulation using RapidMiner Studio 7]]>
Sun, 07 Feb 2016 11:14:50 GMT /slideshow/data-manipulation-with-rapidminer-studio-7/57971931 sitake@slideshare.net(sitake) Data manipulation with RapidMiner Studio 7 sitake This slide shows how to get data from MySQL and do a simple data manipulation using RapidMiner Studio 7 <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/datamanipulation11p-160207111450-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide shows how to get data from MySQL and do a simple data manipulation using RapidMiner Studio 7
Data manipulation with RapidMiner Studio 7 from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
1797 4 https://cdn.slidesharecdn.com/ss_thumbnails/datamanipulation11p-160207111450-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Preprocessing with RapidMiner Studio 6 /slideshow/preprocessing-with-rapidminer-studio-6/56078031 introductiontobusinessanalyticsa5chapter2-151212111049
This content is Chapter 2 of Introduction to Business Analytics with RapidMiner Studio 6 book. ]]>

This content is Chapter 2 of Introduction to Business Analytics with RapidMiner Studio 6 book. ]]>
Sat, 12 Dec 2015 11:10:49 GMT /slideshow/preprocessing-with-rapidminer-studio-6/56078031 sitake@slideshare.net(sitake) Preprocessing with RapidMiner Studio 6 sitake This content is Chapter 2 of Introduction to Business Analytics with RapidMiner Studio 6 book. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/introductiontobusinessanalyticsa5chapter2-151212111049-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This content is Chapter 2 of Introduction to Business Analytics with RapidMiner Studio 6 book.
Preprocessing with RapidMiner Studio 6 from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
62031 8 https://cdn.slidesharecdn.com/ss_thumbnails/introductiontobusinessanalyticsa5chapter2-151212111049-thumbnail.jpg?width=120&height=120&fit=bounds document Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Evaluation metrics: Precision, Recall, F-Measure, ROC /slideshow/evaluation-metrics-precision-recall-fmeasure-roc/55602292 evaluationmetrics-151128123916-lva1-app6892
This slide shows classifier evaluation metrics such as Confusion matrix, Precision, Recall, F-Measure, Accuracy, ROC graph and AUC (Area Under Curve).]]>

This slide shows classifier evaluation metrics such as Confusion matrix, Precision, Recall, F-Measure, Accuracy, ROC graph and AUC (Area Under Curve).]]>
Sat, 28 Nov 2015 12:39:16 GMT /slideshow/evaluation-metrics-precision-recall-fmeasure-roc/55602292 sitake@slideshare.net(sitake) Evaluation metrics: Precision, Recall, F-Measure, ROC sitake This slide shows classifier evaluation metrics such as Confusion matrix, Precision, Recall, F-Measure, Accuracy, ROC graph and AUC (Area Under Curve). <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/evaluationmetrics-151128123916-lva1-app6892-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide shows classifier evaluation metrics such as Confusion matrix, Precision, Recall, F-Measure, Accuracy, ROC graph and AUC (Area Under Curve).
Evaluation metrics: Precision, Recall, F-Measure, ROC from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
81659 50 https://cdn.slidesharecdn.com/ss_thumbnails/evaluationmetrics-151128123916-lva1-app6892-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Introduction to Text Classification with RapidMiner Studio 7 /slideshow/introduction-to-text-classification-with-rapidminer-studio-6/55533310 textmining1p-151126064636-lva1-app6891
This slide presents an introduction to text classification. We used RapidMiner Studio 7 to build Naive Bayes model and apply to the new dataset.]]>

This slide presents an introduction to text classification. We used RapidMiner Studio 7 to build Naive Bayes model and apply to the new dataset.]]>
Thu, 26 Nov 2015 06:46:36 GMT /slideshow/introduction-to-text-classification-with-rapidminer-studio-6/55533310 sitake@slideshare.net(sitake) Introduction to Text Classification with RapidMiner Studio 7 sitake This slide presents an introduction to text classification. We used RapidMiner Studio 7 to build Naive Bayes model and apply to the new dataset. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/textmining1p-151126064636-lva1-app6891-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide presents an introduction to text classification. We used RapidMiner Studio 7 to build Naive Bayes model and apply to the new dataset.
Introduction to Text Classification with RapidMiner Studio 7 from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
20374 13 https://cdn.slidesharecdn.com/ss_thumbnails/textmining1p-151126064636-lva1-app6891-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Introduction to Feature (Attribute) Selection with RapidMiner Studio 6 /slideshow/introduction-to-feature-attribute-selection-with-rapidminer-studio-6-55432350/55432350 week122p-151123193409-lva1-app6891
This presentation describe about Feature Selection methods including Filter approach and Wrapper approach. These examples use RapidMiner Studio 6.]]>

This presentation describe about Feature Selection methods including Filter approach and Wrapper approach. These examples use RapidMiner Studio 6.]]>
Mon, 23 Nov 2015 19:34:08 GMT /slideshow/introduction-to-feature-attribute-selection-with-rapidminer-studio-6-55432350/55432350 sitake@slideshare.net(sitake) Introduction to Feature (Attribute) Selection with RapidMiner Studio 6 sitake This presentation describe about Feature Selection methods including Filter approach and Wrapper approach. These examples use RapidMiner Studio 6. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/week122p-151123193409-lva1-app6891-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This presentation describe about Feature Selection methods including Filter approach and Wrapper approach. These examples use RapidMiner Studio 6.
Introduction to Feature (Attribute) Selection with RapidMiner Studio 6 from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
12559 9 https://cdn.slidesharecdn.com/ss_thumbnails/week122p-151123193409-lva1-app6891-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Search Twitter with RapidMiner Studio 6 /slideshow/search-twitter-with-rapidminer-studio-6/55067476 twitter-151113055314-lva1-app6891
This slide shows how to fetch data from Twitter using RapidMiner Studio 6.]]>

This slide shows how to fetch data from Twitter using RapidMiner Studio 6.]]>
Fri, 13 Nov 2015 05:53:14 GMT /slideshow/search-twitter-with-rapidminer-studio-6/55067476 sitake@slideshare.net(sitake) Search Twitter with RapidMiner Studio 6 sitake This slide shows how to fetch data from Twitter using RapidMiner Studio 6. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/twitter-151113055314-lva1-app6891-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide shows how to fetch data from Twitter using RapidMiner Studio 6.
Search Twitter with RapidMiner Studio 6 from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
41701 5 https://cdn.slidesharecdn.com/ss_thumbnails/twitter-151113055314-lva1-app6891-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Data mining and_big_data_web /slideshow/data-mining-andbigdataweb/54888922 dataminingandbigdataweb-151109000703-lva1-app6891
This slide presents an introduction of data mining and big data analytics. ]]>

This slide presents an introduction of data mining and big data analytics. ]]>
Mon, 09 Nov 2015 00:07:03 GMT /slideshow/data-mining-andbigdataweb/54888922 sitake@slideshare.net(sitake) Data mining and_big_data_web sitake This slide presents an introduction of data mining and big data analytics. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/dataminingandbigdataweb-151109000703-lva1-app6891-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide presents an introduction of data mining and big data analytics.
Data mining and_big_data_web from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
37318 12 https://cdn.slidesharecdn.com/ss_thumbnails/dataminingandbigdataweb-151109000703-lva1-app6891-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Introduction to Data Analytics with RapidMiner Studio 6 (犖犖迦県犖迦犖犖) /slideshow/introduction-to-data-analytics-with-rapidminer-studio-6/52322303 introductiontobusinessanalyticshighlight-150902041704-lva1-app6891
犖犖園犖犖伍犖園犢犖犖迦肩犖犢犖迦犖犢犖犖÷弦犖ム犖謹犖犖犖∇犖迦犖÷顕犖犖÷顕犖∇犖犢犖犢犖ム鍵犖о険犖 犖犖園硯犖犖∇犖迦犢犖犢犖 犖犖迦牽犖犖園犢犖ム鍵犖犢犖 email 犖犖迦牽犖犖巌犖犖迦検犖犢犖迦硯犖犖迦牽犖犢犖迦犢 犖犖犢犖犖犖劇賢犖犢犖迦権犖犖園犖犖÷賢犖犖犢犖ム犢 (online social network) 犖犖犖劇賢 犖犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖迦検犖犢犖迦犖犢犖迦犢犖迦犢 犖犖÷牽犖犖犖о犢犖犢犖犢犖迦犖犖項犖犢犖迦犖ム賢犖犖犖巌犖犖犖迦犖迦牽犖犖項犖萎犖犖園犖о犖迦犢犖迦犢犖迦犢犖犢犖犢犖犢犖迦犖犖犖犢犖迦犖犖迦見犖迦牽犖犖朽犢犖犢犖犖園犖犖о顕犖÷犖巌権犖÷犖犢犖犖犖∇犖迦犖÷顕犖犢犖犢犖犖犖犖謹犖犖犖謹犖犢犖犖犢犖迦犖犖朽犖÷元犖犖橿犖о 30 犢犖犢犖 犢犖ム鍵犖犢犖迦犖犢犖犢犖ム鍵犖о険犖犖÷元犖ム弦犖犖犢犖迦犖犢犖迦検犖迦犖犢犖÷牽犢犖迦犖犖橿犖о 20 犖犖犖 犖犢犖迦犖犖犖犢犖犖迦犖萎検犖朽犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖迦権犖犖巌犖犢犖迦犖犢犖犖犖橿犖о 600 transaction 犖犢犖犖о険犖 犢犖ム鍵犢犖犖犖犖謹犖犢犖犖劇賢犖犢犖犖迦犖萎検犖朽犢犖犖÷弦犖ム犖橿犖о犖犖犖萎検犖迦 18,000 transaction 犖犖朽犖犖項犢犖犢犖犢犖о犢犖犖犖迦犖犢犖犖÷弦犖ム犖ム鍵犖犖犖謹犖犖犖朽犖萎検犖朽犖橿犖о 216,000 transaction 犢犖ム鍵犖犢犖迦犖犢犖犖犢犖犖÷弦犖ム犖犖犖犖迦牽犖犖劇犖犖犖迦権犢犖犖犖伍犖犖犖犢犖÷顕犖犢犢犖犢犖犖∇鹸犢犖犖÷元犖犖橿犖о犖÷顕犖犖÷顕犖∇犖о犖迦犖朽犖犖朽犖犖ム顕犖∇犖犢犖 犖犖о犖迦犢犖犖÷弦犖ム犖朽犖÷元犖÷顕犖犖÷顕犖∇犖犖ム犖迦犖朽犖犖萎犖÷犖犢犖犢犖犢犢犖犖巌犖犖犖萎犖∇犖犢犢犖ム権犖犢犖迦犖犖迦犖犖朽権犖犢犖犢犢犖犢犖犢犖о犖犖∇犖迦犢犖犖朽権犖 犢犖犖劇犖犢犖犢犖犢犖犖÷弦犖ム犖犖ム犖迦犖朽犖÷元犖÷弦犖ム犢犖迦犖犖巌犖÷検犖迦犖犖謹犖犢犖犖迦犖謹犖犖橿犖犢犖犖犢犖犖犖犖橿犢犖犖÷弦犖ム犖犖ム犖迦犖朽犖÷顕犖犖橿犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犢犖犖劇犖犖犖項犖犢犖犢犖÷幻犖÷犢犖迦犢 犢犖犖犖犖園犖犖劇賢犢犖ム犖÷犖朽犖犖萎犖犖犖犖о鹸犖犖朽犖迦牽犖犖橿犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖迦権犖÷顕犖о鹸犢犖犖犖迦鍵犖犢犢犖犢犢犖犢犖犢犖犢犖犖犖園硯犖犖∇犖迦犢犖犖∇犖犖巌犖÷犖迦犖犖迦牽犢犖犖犖朽権犖÷犢犖犖÷弦犖ム犖犖劇犖犢犖犢犖犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犖犢犖犖÷弦犖ム犖橿犖犢犖犢犖迦権犖÷顕犖犖犖謹犖 犖犖ム険犖犖犖迦犖犖園犖犖犖萎犖犢犖犖犖迦牽犖犖橿犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖迦権犖÷顕犖犖橿犖迦牽犢犖犢犖犖犖ム幻犢犖 (segmentation) 犖犖謹犖犖犖萎犢犖о権犢犖犢犖犖迦検犖迦牽犖犢犖犢犢犖迦犖犖犖む犖巌犖犖犖÷犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖犖朽犖謹犖 犢犖犖犖迦鍵犖犖迦牽犖犖萎犖項牽犖迦権犖ム鍵犢犖犖朽権犖犖犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖迦権犖犖犢犖犢犖犢犖犢犖犢犖∇顕犖 犢犖犖∇犖犖犖犖園犖犖劇賢犢犖ム犖÷犖朽犢犖犖迦犖萎犖犢犖о鹸犖犖朽犖迦牽犢犖犢犖犖犖ム幻犢犖÷犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犢犖о権犢犖犖犖犖巌 RFM (犖∇犖犖÷顕犖犖迦 Recency, Frequency 犢犖ム鍵 Monetary) 犢犖犖劇犖犖犖萎犖犢犢犖犢犖迦犖犖犖む犖巌犖犖犖÷犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖ム幻犢犖÷硯犢犖迦検犖朽犖橿犖о犖犖犖園犖犢犖犖犖迦牽犖犖劇犖犖犖巌犖犢犖迦検犖迦犖犢犖犖∇犖犢犢犖犖犢犖ム鍵犖÷元犖犖迦牽犢犖犢犖犢犖迦権犖÷顕犖犖犢犖犖∇犖犢犢]]>

犖犖園犖犖伍犖園犢犖犖迦肩犖犢犖迦犖犢犖犖÷弦犖ム犖謹犖犖犖∇犖迦犖÷顕犖犖÷顕犖∇犖犢犖犢犖ム鍵犖о険犖 犖犖園硯犖犖∇犖迦犢犖犢犖 犖犖迦牽犖犖園犢犖ム鍵犖犢犖 email 犖犖迦牽犖犖巌犖犖迦検犖犢犖迦硯犖犖迦牽犖犢犖迦犢 犖犖犢犖犖犖劇賢犖犢犖迦権犖犖園犖犖÷賢犖犖犢犖ム犢 (online social network) 犖犖犖劇賢 犖犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖迦検犖犢犖迦犖犢犖迦犢犖迦犢 犖犖÷牽犖犖犖о犢犖犢犖犢犖迦犖犖項犖犢犖迦犖ム賢犖犖犖巌犖犖犖迦犖迦牽犖犖項犖萎犖犖園犖о犖迦犢犖迦犢犖迦犢犖犢犖犢犖犢犖迦犖犖犖犢犖迦犖犖迦見犖迦牽犖犖朽犢犖犢犖犖園犖犖о顕犖÷犖巌権犖÷犖犢犖犖犖∇犖迦犖÷顕犖犢犖犢犖犖犖犖謹犖犖犖謹犖犢犖犖犢犖迦犖犖朽犖÷元犖犖橿犖о 30 犢犖犢犖 犢犖ム鍵犖犢犖迦犖犢犖犢犖ム鍵犖о険犖犖÷元犖ム弦犖犖犢犖迦犖犢犖迦検犖迦犖犢犖÷牽犢犖迦犖犖橿犖о 20 犖犖犖 犖犢犖迦犖犖犖犢犖犖迦犖萎検犖朽犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖迦権犖犖巌犖犢犖迦犖犢犖犖犖橿犖о 600 transaction 犖犢犖犖о険犖 犢犖ム鍵犢犖犖犖犖謹犖犢犖犖劇賢犖犢犖犖迦犖萎検犖朽犢犖犖÷弦犖ム犖橿犖о犖犖犖萎検犖迦 18,000 transaction 犖犖朽犖犖項犢犖犢犖犢犖о犢犖犖犖迦犖犢犖犖÷弦犖ム犖ム鍵犖犖犖謹犖犖犖朽犖萎検犖朽犖橿犖о 216,000 transaction 犢犖ム鍵犖犢犖迦犖犢犖犖犢犖犖÷弦犖ム犖犖犖犖迦牽犖犖劇犖犖犖迦権犢犖犖犖伍犖犖犖犢犖÷顕犖犢犢犖犢犖犖∇鹸犢犖犖÷元犖犖橿犖о犖÷顕犖犖÷顕犖∇犖о犖迦犖朽犖犖朽犖犖ム顕犖∇犖犢犖 犖犖о犖迦犢犖犖÷弦犖ム犖朽犖÷元犖÷顕犖犖÷顕犖∇犖犖ム犖迦犖朽犖犖萎犖÷犖犢犖犢犖犢犢犖犖巌犖犖犖萎犖∇犖犢犢犖ム権犖犢犖迦犖犖迦犖犖朽権犖犢犖犢犢犖犢犖犢犖о犖犖∇犖迦犢犖犖朽権犖 犢犖犖劇犖犢犖犢犖犢犖犖÷弦犖ム犖犖ム犖迦犖朽犖÷元犖÷弦犖ム犢犖迦犖犖巌犖÷検犖迦犖犖謹犖犢犖犖迦犖謹犖犖橿犖犢犖犖犢犖犖犖犖橿犢犖犖÷弦犖ム犖犖ム犖迦犖朽犖÷顕犖犖橿犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犢犖犖劇犖犖犖項犖犢犖犢犖÷幻犖÷犢犖迦犢 犢犖犖犖犖園犖犖劇賢犢犖ム犖÷犖朽犖犖萎犖犖犖犖о鹸犖犖朽犖迦牽犖犖橿犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖迦権犖÷顕犖о鹸犢犖犖犖迦鍵犖犢犢犖犢犢犖犢犖犢犖犢犖犖犖園硯犖犖∇犖迦犢犖犖∇犖犖巌犖÷犖迦犖犖迦牽犢犖犖犖朽権犖÷犢犖犖÷弦犖ム犖犖劇犖犢犖犢犖犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犖犢犖犖÷弦犖ム犖橿犖犢犖犢犖迦権犖÷顕犖犖犖謹犖 犖犖ム険犖犖犖迦犖犖園犖犖犖萎犖犢犖犖犖迦牽犖犖橿犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖迦権犖÷顕犖犖橿犖迦牽犢犖犢犖犖犖ム幻犢犖 (segmentation) 犖犖謹犖犖犖萎犢犖о権犢犖犢犖犖迦検犖迦牽犖犢犖犢犢犖迦犖犖犖む犖巌犖犖犖÷犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖犖朽犖謹犖 犢犖犖犖迦鍵犖犖迦牽犖犖萎犖項牽犖迦権犖ム鍵犢犖犖朽権犖犖犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖迦権犖犖犢犖犢犖犢犖犢犖犢犖∇顕犖 犢犖犖∇犖犖犖犖園犖犖劇賢犢犖ム犖÷犖朽犢犖犖迦犖萎犖犢犖о鹸犖犖朽犖迦牽犢犖犢犖犖犖ム幻犢犖÷犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犢犖о権犢犖犖犖犖巌 RFM (犖∇犖犖÷顕犖犖迦 Recency, Frequency 犢犖ム鍵 Monetary) 犢犖犖劇犖犖犖萎犖犢犢犖犢犖迦犖犖犖む犖巌犖犖犖÷犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖ム幻犢犖÷硯犢犖迦検犖朽犖橿犖о犖犖犖園犖犢犖犖犖迦牽犖犖劇犖犖犖巌犖犢犖迦検犖迦犖犢犖犖∇犖犢犢犖犖犢犖ム鍵犖÷元犖犖迦牽犢犖犢犖犢犖迦権犖÷顕犖犖犢犖犖∇犖犢犢]]>
Wed, 02 Sep 2015 04:17:04 GMT /slideshow/introduction-to-data-analytics-with-rapidminer-studio-6/52322303 sitake@slideshare.net(sitake) Introduction to Data Analytics with RapidMiner Studio 6 (犖犖迦県犖迦犖犖) sitake 犖犖園犖犖伍犖園犢犖犖迦肩犖犢犖迦犖犢犖犖÷弦犖ム犖謹犖犖犖∇犖迦犖÷顕犖犖÷顕犖∇犖犢犖犢犖ム鍵犖о険犖 犖犖園硯犖犖∇犖迦犢犖犢犖 犖犖迦牽犖犖園犢犖ム鍵犖犢犖 email 犖犖迦牽犖犖巌犖犖迦検犖犢犖迦硯犖犖迦牽犖犢犖迦犢 犖犖犢犖犖犖劇賢犖犢犖迦権犖犖園犖犖÷賢犖犖犢犖ム犢 (online social network) 犖犖犖劇賢 犖犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖迦検犖犢犖迦犖犢犖迦犢犖迦犢 犖犖÷牽犖犖犖о犢犖犢犖犢犖迦犖犖項犖犢犖迦犖ム賢犖犖犖巌犖犖犖迦犖迦牽犖犖項犖萎犖犖園犖о犖迦犢犖迦犢犖迦犢犖犢犖犢犖犢犖迦犖犖犖犢犖迦犖犖迦見犖迦牽犖犖朽犢犖犢犖犖園犖犖о顕犖÷犖巌権犖÷犖犢犖犖犖∇犖迦犖÷顕犖犢犖犢犖犖犖犖謹犖犖犖謹犖犢犖犖犢犖迦犖犖朽犖÷元犖犖橿犖о 30 犢犖犢犖 犢犖ム鍵犖犢犖迦犖犢犖犢犖ム鍵犖о険犖犖÷元犖ム弦犖犖犢犖迦犖犢犖迦検犖迦犖犢犖÷牽犢犖迦犖犖橿犖о 20 犖犖犖 犖犢犖迦犖犖犖犢犖犖迦犖萎検犖朽犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖迦権犖犖巌犖犢犖迦犖犢犖犖犖橿犖о 600 transaction 犖犢犖犖о険犖 犢犖ム鍵犢犖犖犖犖謹犖犢犖犖劇賢犖犢犖犖迦犖萎検犖朽犢犖犖÷弦犖ム犖橿犖о犖犖犖萎検犖迦 18,000 transaction 犖犖朽犖犖項犢犖犢犖犢犖о犢犖犖犖迦犖犢犖犖÷弦犖ム犖ム鍵犖犖犖謹犖犖犖朽犖萎検犖朽犖橿犖о 216,000 transaction 犢犖ム鍵犖犢犖迦犖犢犖犖犢犖犖÷弦犖ム犖犖犖犖迦牽犖犖劇犖犖犖迦権犢犖犖犖伍犖犖犖犢犖÷顕犖犢犢犖犢犖犖∇鹸犢犖犖÷元犖犖橿犖о犖÷顕犖犖÷顕犖∇犖о犖迦犖朽犖犖朽犖犖ム顕犖∇犖犢犖 犖犖о犖迦犢犖犖÷弦犖ム犖朽犖÷元犖÷顕犖犖÷顕犖∇犖犖ム犖迦犖朽犖犖萎犖÷犖犢犖犢犖犢犢犖犖巌犖犖犖萎犖∇犖犢犢犖ム権犖犢犖迦犖犖迦犖犖朽権犖犢犖犢犢犖犢犖犢犖о犖犖∇犖迦犢犖犖朽権犖 犢犖犖劇犖犢犖犢犖犢犖犖÷弦犖ム犖犖ム犖迦犖朽犖÷元犖÷弦犖ム犢犖迦犖犖巌犖÷検犖迦犖犖謹犖犢犖犖迦犖謹犖犖橿犖犢犖犖犢犖犖犖犖橿犢犖犖÷弦犖ム犖犖ム犖迦犖朽犖÷顕犖犖橿犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犢犖犖劇犖犖犖項犖犢犖犢犖÷幻犖÷犢犖迦犢 犢犖犖犖犖園犖犖劇賢犢犖ム犖÷犖朽犖犖萎犖犖犖犖о鹸犖犖朽犖迦牽犖犖橿犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖迦権犖÷顕犖о鹸犢犖犖犖迦鍵犖犢犢犖犢犢犖犢犖犢犖犢犖犖犖園硯犖犖∇犖迦犢犖犖∇犖犖巌犖÷犖迦犖犖迦牽犢犖犖犖朽権犖÷犢犖犖÷弦犖ム犖犖劇犖犢犖犢犖犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犖犢犖犖÷弦犖ム犖橿犖犢犖犢犖迦権犖÷顕犖犖犖謹犖 犖犖ム険犖犖犖迦犖犖園犖犖犖萎犖犢犖犖犖迦牽犖犖橿犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖迦権犖÷顕犖犖橿犖迦牽犢犖犢犖犖犖ム幻犢犖 (segmentation) 犖犖謹犖犖犖萎犢犖о権犢犖犢犖犖迦検犖迦牽犖犢犖犢犢犖迦犖犖犖む犖巌犖犖犖÷犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖犖朽犖謹犖 犢犖犖犖迦鍵犖犖迦牽犖犖萎犖項牽犖迦権犖ム鍵犢犖犖朽権犖犖犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖迦権犖犖犢犖犢犖犢犖犢犖犢犖∇顕犖 犢犖犖∇犖犖犖犖園犖犖劇賢犢犖ム犖÷犖朽犢犖犖迦犖萎犖犢犖о鹸犖犖朽犖迦牽犢犖犢犖犖犖ム幻犢犖÷犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犢犖о権犢犖犖犖犖巌 RFM (犖∇犖犖÷顕犖犖迦 Recency, Frequency 犢犖ム鍵 Monetary) 犢犖犖劇犖犖犖萎犖犢犢犖犢犖迦犖犖犖む犖巌犖犖犖÷犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖ム幻犢犖÷硯犢犖迦検犖朽犖橿犖о犖犖犖園犖犢犖犖犖迦牽犖犖劇犖犖犖巌犖犢犖迦検犖迦犖犢犖犖∇犖犢犢犖犖犢犖ム鍵犖÷元犖犖迦牽犢犖犢犖犢犖迦権犖÷顕犖犖犢犖犖∇犖犢犢 <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/introductiontobusinessanalyticshighlight-150902041704-lva1-app6891-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> 犖犖園犖犖伍犖園犢犖犖迦肩犖犢犖迦犖犢犖犖÷弦犖ム犖謹犖犖犖∇犖迦犖÷顕犖犖÷顕犖∇犖犢犖犢犖ム鍵犖о険犖 犖犖園硯犖犖∇犖迦犢犖犢犖 犖犖迦牽犖犖園犢犖ム鍵犖犢犖 email 犖犖迦牽犖犖巌犖犖迦検犖犢犖迦硯犖犖迦牽犖犢犖迦犢 犖犖犢犖犖犖劇賢犖犢犖迦権犖犖園犖犖÷賢犖犖犢犖ム犢 (online social network) 犖犖犖劇賢 犖犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖迦検犖犢犖迦犖犢犖迦犢犖迦犢 犖犖÷牽犖犖犖о犢犖犢犖犢犖迦犖犖項犖犢犖迦犖ム賢犖犖犖巌犖犖犖迦犖迦牽犖犖項犖萎犖犖園犖о犖迦犢犖迦犢犖迦犢犖犢犖犢犖犢犖迦犖犖犖犢犖迦犖犖迦見犖迦牽犖犖朽犢犖犢犖犖園犖犖о顕犖÷犖巌権犖÷犖犢犖犖犖∇犖迦犖÷顕犖犢犖犢犖犖犖犖謹犖犖犖謹犖犢犖犖犢犖迦犖犖朽犖÷元犖犖橿犖о 30 犢犖犢犖 犢犖ム鍵犖犢犖迦犖犢犖犢犖ム鍵犖о険犖犖÷元犖ム弦犖犖犢犖迦犖犢犖迦検犖迦犖犢犖÷牽犢犖迦犖犖橿犖о 20 犖犖犖 犖犢犖迦犖犖犖犢犖犖迦犖萎検犖朽犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖迦権犖犖巌犖犢犖迦犖犢犖犖犖橿犖о 600 transaction 犖犢犖犖о険犖 犢犖ム鍵犢犖犖犖犖謹犖犢犖犖劇賢犖犢犖犖迦犖萎検犖朽犢犖犖÷弦犖ム犖橿犖о犖犖犖萎検犖迦 18,000 transaction 犖犖朽犖犖項犢犖犢犖犢犖о犢犖犖犖迦犖犢犖犖÷弦犖ム犖ム鍵犖犖犖謹犖犖犖朽犖萎検犖朽犖橿犖о 216,000 transaction 犢犖ム鍵犖犢犖迦犖犢犖犖犢犖犖÷弦犖ム犖犖犖犖迦牽犖犖劇犖犖犖迦権犢犖犖犖伍犖犖犖犢犖÷顕犖犢犢犖犢犖犖∇鹸犢犖犖÷元犖犖橿犖о犖÷顕犖犖÷顕犖∇犖о犖迦犖朽犖犖朽犖犖ム顕犖∇犖犢犖 犖犖о犖迦犢犖犖÷弦犖ム犖朽犖÷元犖÷顕犖犖÷顕犖∇犖犖ム犖迦犖朽犖犖萎犖÷犖犢犖犢犖犢犢犖犖巌犖犖犖萎犖∇犖犢犢犖ム権犖犢犖迦犖犖迦犖犖朽権犖犢犖犢犢犖犢犖犢犖о犖犖∇犖迦犢犖犖朽権犖 犢犖犖劇犖犢犖犢犖犢犖犖÷弦犖ム犖犖ム犖迦犖朽犖÷元犖÷弦犖ム犢犖迦犖犖巌犖÷検犖迦犖犖謹犖犢犖犖迦犖謹犖犖橿犖犢犖犖犢犖犖犖犖橿犢犖犖÷弦犖ム犖犖ム犖迦犖朽犖÷顕犖犖橿犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犢犖犖劇犖犖犖項犖犢犖犢犖÷幻犖÷犢犖迦犢 犢犖犖犖犖園犖犖劇賢犢犖ム犖÷犖朽犖犖萎犖犖犖犖о鹸犖犖朽犖迦牽犖犖橿犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖迦権犖÷顕犖о鹸犢犖犖犖迦鍵犖犢犢犖犢犢犖犢犖犢犖犢犖犖犖園硯犖犖∇犖迦犢犖犖∇犖犖巌犖÷犖迦犖犖迦牽犢犖犖犖朽権犖÷犢犖犖÷弦犖ム犖犖劇犖犢犖犢犖犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犖犢犖犖÷弦犖ム犖橿犖犢犖犢犖迦権犖÷顕犖犖犖謹犖 犖犖ム険犖犖犖迦犖犖園犖犖犖萎犖犢犖犖犖迦牽犖犖橿犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖迦権犖÷顕犖犖橿犖迦牽犢犖犢犖犖犖ム幻犢犖 (segmentation) 犖犖謹犖犖犖萎犢犖о権犢犖犢犖犖迦検犖迦牽犖犢犖犢犢犖迦犖犖犖む犖巌犖犖犖÷犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖犖朽犖謹犖 犢犖犖犖迦鍵犖犖迦牽犖犖萎犖項牽犖迦権犖ム鍵犢犖犖朽権犖犖犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖迦権犖犖犢犖犢犖犢犖犢犖犢犖∇顕犖 犢犖犖∇犖犖犖犖園犖犖劇賢犢犖ム犖÷犖朽犢犖犖迦犖萎犖犢犖о鹸犖犖朽犖迦牽犢犖犢犖犖犖ム幻犢犖÷犢犖犖÷弦犖ム犖迦牽犖犖劇犖犖犢犖о権犢犖犖犖犖巌 RFM (犖∇犖犖÷顕犖犖迦 Recency, Frequency 犢犖ム鍵 Monetary) 犢犖犖劇犖犖犖萎犖犢犢犖犢犖迦犖犖犖む犖巌犖犖犖÷犖迦牽犖犖劇犖犖犖巌犖犢犖迦犖犖犖ム弦犖犖犢犖迦犖犢犖ム鍵犖犖ム幻犢犖÷硯犢犖迦検犖朽犖橿犖о犖犖犖園犖犢犖犖犖迦牽犖犖劇犖犖犖巌犖犢犖迦検犖迦犖犢犖犖∇犖犢犢犖犖犢犖ム鍵犖÷元犖犖迦牽犢犖犢犖犢犖迦権犖÷顕犖犖犢犖犖∇犖犢犢
Introduction to Data Analytics with RapidMiner Studio 6 (犖犖迦県犖迦犖犖) from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
36622 10 https://cdn.slidesharecdn.com/ss_thumbnails/introductiontobusinessanalyticshighlight-150902041704-lva1-app6891-thumbnail.jpg?width=120&height=120&fit=bounds document Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Practical Data Mining with RapidMiner Studio 7 : A Basic and Intermediate /slideshow/practical-data-mining-with-rapidminer-studio-6-a-basic-and-intermediate/51185800 rapidminertraininghighlight-150802092514-lva1-app6891
犖犢犖ム犢犖犖迦犖犢犖о犖犖迦犖犖迦牽犖犖犖犖 Practical Data Mining 犖犖伍犖犖犖朽 17 犖犖園犖犖犖犖÷犖犖∇見犖犖. 犖犖迦犢犖 犖犖巌硯犖犢 ]]>

犖犢犖ム犢犖犖迦犖犢犖о犖犖迦犖犖迦牽犖犖犖犖 Practical Data Mining 犖犖伍犖犖犖朽 17 犖犖園犖犖犖犖÷犖犖∇見犖犖. 犖犖迦犢犖 犖犖巌硯犖犢 ]]>
Sun, 02 Aug 2015 09:25:14 GMT /slideshow/practical-data-mining-with-rapidminer-studio-6-a-basic-and-intermediate/51185800 sitake@slideshare.net(sitake) Practical Data Mining with RapidMiner Studio 7 : A Basic and Intermediate sitake 犖犢犖ム犢犖犖迦犖犢犖о犖犖迦犖犖迦牽犖犖犖犖 Practical Data Mining 犖犖伍犖犖犖朽 17 犖犖園犖犖犖犖÷犖犖∇見犖犖. 犖犖迦犢犖 犖犖巌硯犖犢 <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/rapidminertraininghighlight-150802092514-lva1-app6891-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> 犖犢犖ム犢犖犖迦犖犢犖о犖犖迦犖犖迦牽犖犖犖犖 Practical Data Mining 犖犖伍犖犖犖朽 17 犖犖園犖犖犖犖÷犖犖∇見犖犖. 犖犖迦犢犖 犖犖巌硯犖犢
Practical Data Mining with RapidMiner Studio 7 : A Basic and Intermediate from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
204978 9 https://cdn.slidesharecdn.com/ss_thumbnails/rapidminertraininghighlight-150802092514-lva1-app6891-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Practical Data Mining: FP-Growth /slideshow/practical-data-mining-fpgrowth-44550757/44550757 fp-growth-150211091505-conversion-gate01
This slide presents FP-Growth technique.]]>

This slide presents FP-Growth technique.]]>
Wed, 11 Feb 2015 09:15:04 GMT /slideshow/practical-data-mining-fpgrowth-44550757/44550757 sitake@slideshare.net(sitake) Practical Data Mining: FP-Growth sitake This slide presents FP-Growth technique. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/fp-growth-150211091505-conversion-gate01-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This slide presents FP-Growth technique.
Practical Data Mining: FP-Growth from Big Data Engineering, Faculty of Engineering, Dhurakij Pundit University
]]>
7612 7 https://cdn.slidesharecdn.com/ss_thumbnails/fp-growth-150211091505-conversion-gate01-thumbnail.jpg?width=120&height=120&fit=bounds presentation 000000 http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
https://cdn.slidesharecdn.com/profile-photo-sitake-48x48.jpg?cb=1626941711 犖犖犖犖犢犖迦犖÷顕犖犖犖犖迦犢犖ム鍵犢犖犢犖犖園 RapidMiner Certificate 犖犖萎犖園 Analyst 犖犖項犢犖犢犖犖犖犖園犖犖劇賢 An Introduction to Data Mining Techniques (犖犖迦県犖迦犖犖) 犖犖項犖犢犖о検犖犢犖犖犖園犖 犖犢犖迦犖犖伍犖犖犢犖о犖犖迦検犖園 犖犖迦犢犖 犖犖巌硯犖犢 (data cube) 犢犖犢犖犖園犖犖伍 visiting PhD Student 犖 犖÷見犖迦硯犖巌犖∇顕犖ム険犖∇権犖犖犢犖 (York) 犢犖÷厳犖犖犢犖犖犖犖犢犖 犖犖犖萎犖犖犢犖犖犖迦犖 犢犖犢犖犖園 statement of completion 犖犖ム険犖犖犖項犖 Data Mining with Weka 犖犖迦犖÷見犖迦硯犖巌犖∇顕犖ム険犖 Waikato 犖犖犖朽犖犖朽犖犖犖謹犖犖迦犢犖迦犖犖迦牽犖о鹸犢犖犖犖迦鍵犖犢犖犢犖犖÷弦犖ム犖犢犖犖園犖犖÷顕犖犖÷肩犢犖犢犖犖犖巌検犢犖犖犢犖犢犖ム権犖 (犢犖犖-犖犖朽犖犖伍犖) 犖о鹸犖犖∇顕犖犖犖犖犖萎犖橿見犖ム険犖犖犖項犖 Practical Data Mining 犖犖伍犖犖犖朽 1-10 犖犖萎見犖о犖迦犢犖犖劇賢犖 犖犖む県犖犖迦犖 2557 犖犖む絹犖犖巌犖迦権犖 2558 犖犖迦犖迦牽犖∇犖犖巌犖犖犢犖犖о鹸犖犖 Data Warehouse and Data Mining 犖犖迦犖犖迦牽犢犖犖朽権犖犖犖朽 1 犖犖ム険犖犖犖項犖犖о鹸犖犖о犖犖犖÷犢犖犖÷弦犖ム犖犖迦犢犖犖犢 (Big Data Engineering) 犖犖朽犖迦牽犖犖謹犖犖 2558 犖÷見犖迦硯犖巌犖∇顕... http://facebook.com/datacube.th https://cdn.slidesharecdn.com/ss_thumbnails/presentdatacube-200426133209-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/practical-data-science-usecases-in-retail-ecommerce/232665471 Practical Data Science... https://cdn.slidesharecdn.com/ss_thumbnails/presentationeakasit-200423104948-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/first-step-to-big-data/232496150 First Step to Big Data https://cdn.slidesharecdn.com/ss_thumbnails/introductiontobigdata-190609035858-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/introduction-to-big-data-technologies-149107634/149107634 Introduction to Big Da...