ݺߣshows by User: yoginimahadule / http://www.slideshare.net/images/logo.gif ݺߣshows by User: yoginimahadule / Wed, 15 Apr 2020 17:59:25 GMT ݺߣShare feed for ݺߣshows by User: yoginimahadule Impact of soil properties on carbon sequestration /slideshow/impact-of-soil-properties-on-carbon-sequestration/232065222 pmcseqfinal2-200415175925
Carbon sequestration is an important global phenomenon that plays a significant role in maintaining a balanced global carbon cycle and sustainable crop production. Carbon Sequestration is the placement of CO2 into a depository in such way that it remains safely and not released back to the atmosphere. Among the soil factors, texture plays an important role in C sequestration. The observation that the decrease in clay- and silt associated C and N upon cultivation of soils was generally less than the decrease in C and N in the particle size fraction > 20 µm confirms that clay and sift particles protect C against microbial degradation (Hassink, 1997). Increase in SOC concentration with conservation tillage was partly responsible for the increased macroaggregation near the soil surface.( Zhang et al. 2013) Electrical conductivity in soils affects the organic carbon content by reducing the uptake of minerals and water by the plant which ultimately results in less plant growth. A higher electrical conductivity causes less decomposition in soils which consequently reduces the accumulation of humus meanwhile, the values of acidity; percentage of organic matter, organic carbon and the sequestration of carbon in soils containing T. kotschyiwas more than the values observed in soils containing T. aphylla and the soil of the control which contained no plants. Nitrogen applicaton at optimum rate help to sequester carbon in soil.(Jiang et al. 2019). Integrated nutrient application in long-term rice-wheat cropping system would be a suitable option with respect to its potentiality of increasing yield, nutrient availability, and sequestering soil organic carbon for sustainable soil health management in partially reclaimed sodic soils of the north Indian subcontinent. He concluded that FYM application increase passive pool of soil while green manure increase active and labile pool. (Choudhury et al. 2018) Six et al. (2006) by various observation of different sites concludes changes in the relative abundance and activity of bacteria and fungi may significantly affect C cycling and storage, due to the unique physiologies and differential interactions with soil physical properties of these two microbial groups. It has been hypothesized that C turnover is slower in fungal-dominated communities in part because fungi in corporate more soil C into biomass than bacteria and because fungal cell walls are more recalcitrant than bacterial cell walls. Same result by Aliasgharzad et al. 2016). Tsai et al. (2013) showed positive correlation of soil organic carbon with elevation ]]>

Carbon sequestration is an important global phenomenon that plays a significant role in maintaining a balanced global carbon cycle and sustainable crop production. Carbon Sequestration is the placement of CO2 into a depository in such way that it remains safely and not released back to the atmosphere. Among the soil factors, texture plays an important role in C sequestration. The observation that the decrease in clay- and silt associated C and N upon cultivation of soils was generally less than the decrease in C and N in the particle size fraction > 20 µm confirms that clay and sift particles protect C against microbial degradation (Hassink, 1997). Increase in SOC concentration with conservation tillage was partly responsible for the increased macroaggregation near the soil surface.( Zhang et al. 2013) Electrical conductivity in soils affects the organic carbon content by reducing the uptake of minerals and water by the plant which ultimately results in less plant growth. A higher electrical conductivity causes less decomposition in soils which consequently reduces the accumulation of humus meanwhile, the values of acidity; percentage of organic matter, organic carbon and the sequestration of carbon in soils containing T. kotschyiwas more than the values observed in soils containing T. aphylla and the soil of the control which contained no plants. Nitrogen applicaton at optimum rate help to sequester carbon in soil.(Jiang et al. 2019). Integrated nutrient application in long-term rice-wheat cropping system would be a suitable option with respect to its potentiality of increasing yield, nutrient availability, and sequestering soil organic carbon for sustainable soil health management in partially reclaimed sodic soils of the north Indian subcontinent. He concluded that FYM application increase passive pool of soil while green manure increase active and labile pool. (Choudhury et al. 2018) Six et al. (2006) by various observation of different sites concludes changes in the relative abundance and activity of bacteria and fungi may significantly affect C cycling and storage, due to the unique physiologies and differential interactions with soil physical properties of these two microbial groups. It has been hypothesized that C turnover is slower in fungal-dominated communities in part because fungi in corporate more soil C into biomass than bacteria and because fungal cell walls are more recalcitrant than bacterial cell walls. Same result by Aliasgharzad et al. 2016). Tsai et al. (2013) showed positive correlation of soil organic carbon with elevation ]]>
Wed, 15 Apr 2020 17:59:25 GMT /slideshow/impact-of-soil-properties-on-carbon-sequestration/232065222 yoginimahadule@slideshare.net(yoginimahadule) Impact of soil properties on carbon sequestration yoginimahadule Carbon sequestration is an important global phenomenon that plays a significant role in maintaining a balanced global carbon cycle and sustainable crop production. Carbon Sequestration is the placement of CO2 into a depository in such way that it remains safely and not released back to the atmosphere. Among the soil factors, texture plays an important role in C sequestration. The observation that the decrease in clay- and silt associated C and N upon cultivation of soils was generally less than the decrease in C and N in the particle size fraction > 20 µm confirms that clay and sift particles protect C against microbial degradation (Hassink, 1997). Increase in SOC concentration with conservation tillage was partly responsible for the increased macroaggregation near the soil surface.( Zhang et al. 2013) Electrical conductivity in soils affects the organic carbon content by reducing the uptake of minerals and water by the plant which ultimately results in less plant growth. A higher electrical conductivity causes less decomposition in soils which consequently reduces the accumulation of humus meanwhile, the values of acidity; percentage of organic matter, organic carbon and the sequestration of carbon in soils containing T. kotschyiwas more than the values observed in soils containing T. aphylla and the soil of the control which contained no plants. Nitrogen applicaton at optimum rate help to sequester carbon in soil.(Jiang et al. 2019). Integrated nutrient application in long-term rice-wheat cropping system would be a suitable option with respect to its potentiality of increasing yield, nutrient availability, and sequestering soil organic carbon for sustainable soil health management in partially reclaimed sodic soils of the north Indian subcontinent. He concluded that FYM application increase passive pool of soil while green manure increase active and labile pool. (Choudhury et al. 2018) Six et al. (2006) by various observation of different sites concludes changes in the relative abundance and activity of bacteria and fungi may significantly affect C cycling and storage, due to the unique physiologies and differential interactions with soil physical properties of these two microbial groups. It has been hypothesized that C turnover is slower in fungal-dominated communities in part because fungi in corporate more soil C into biomass than bacteria and because fungal cell walls are more recalcitrant than bacterial cell walls. Same result by Aliasgharzad et al. 2016). Tsai et al. (2013) showed positive correlation of soil organic carbon with elevation <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/pmcseqfinal2-200415175925-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Carbon sequestration is an important global phenomenon that plays a significant role in maintaining a balanced global carbon cycle and sustainable crop production. Carbon Sequestration is the placement of CO2 into a depository in such way that it remains safely and not released back to the atmosphere. Among the soil factors, texture plays an important role in C sequestration. The observation that the decrease in clay- and silt associated C and N upon cultivation of soils was generally less than the decrease in C and N in the particle size fraction &gt; 20 µm confirms that clay and sift particles protect C against microbial degradation (Hassink, 1997). Increase in SOC concentration with conservation tillage was partly responsible for the increased macroaggregation near the soil surface.( Zhang et al. 2013) Electrical conductivity in soils affects the organic carbon content by reducing the uptake of minerals and water by the plant which ultimately results in less plant growth. A higher electrical conductivity causes less decomposition in soils which consequently reduces the accumulation of humus meanwhile, the values of acidity; percentage of organic matter, organic carbon and the sequestration of carbon in soils containing T. kotschyiwas more than the values observed in soils containing T. aphylla and the soil of the control which contained no plants. Nitrogen applicaton at optimum rate help to sequester carbon in soil.(Jiang et al. 2019). Integrated nutrient application in long-term rice-wheat cropping system would be a suitable option with respect to its potentiality of increasing yield, nutrient availability, and sequestering soil organic carbon for sustainable soil health management in partially reclaimed sodic soils of the north Indian subcontinent. He concluded that FYM application increase passive pool of soil while green manure increase active and labile pool. (Choudhury et al. 2018) Six et al. (2006) by various observation of different sites concludes changes in the relative abundance and activity of bacteria and fungi may significantly affect C cycling and storage, due to the unique physiologies and differential interactions with soil physical properties of these two microbial groups. It has been hypothesized that C turnover is slower in fungal-dominated communities in part because fungi in corporate more soil C into biomass than bacteria and because fungal cell walls are more recalcitrant than bacterial cell walls. Same result by Aliasgharzad et al. 2016). Tsai et al. (2013) showed positive correlation of soil organic carbon with elevation
Impact of soil properties on carbon sequestration from yoginimahadule
]]>
799 0 https://cdn.slidesharecdn.com/ss_thumbnails/pmcseqfinal2-200415175925-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
https://public.slidesharecdn.com/v2/images/profile-picture.png