ºÝºÝߣshows by User: zhihua98 / http://www.slideshare.net/images/logo.gif ºÝºÝߣshows by User: zhihua98 / Tue, 29 May 2018 12:20:00 GMT ºÝºÝߣShare feed for ºÝºÝߣshows by User: zhihua98 Frontier in reinforcement learning /slideshow/frontier-in-reinforcement-learning/99368276 frontierinreinforcementlearning-180529122000
This is the lecture slides in DSAI 2018, National Cheng Kung University. In this slides, we introduce transfer learning and some examples in reinforcement learning. Besides, we also give a brief introduction to curriculum learning.]]>

This is the lecture slides in DSAI 2018, National Cheng Kung University. In this slides, we introduce transfer learning and some examples in reinforcement learning. Besides, we also give a brief introduction to curriculum learning.]]>
Tue, 29 May 2018 12:20:00 GMT /slideshow/frontier-in-reinforcement-learning/99368276 zhihua98@slideshare.net(zhihua98) Frontier in reinforcement learning zhihua98 This is the lecture slides in DSAI 2018, National Cheng Kung University. In this slides, we introduce transfer learning and some examples in reinforcement learning. Besides, we also give a brief introduction to curriculum learning. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/frontierinreinforcementlearning-180529122000-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This is the lecture slides in DSAI 2018, National Cheng Kung University. In this slides, we introduce transfer learning and some examples in reinforcement learning. Besides, we also give a brief introduction to curriculum learning.
Frontier in reinforcement learning from Jie-Han Chen
]]>
809 3 https://cdn.slidesharecdn.com/ss_thumbnails/frontierinreinforcementlearning-180529122000-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Actor critic algorithm /slideshow/actor-critic-algorithm/99368105 actor-criticalgorithm-180529121709
The lecture slides in DSAI 2018, National Cheng Kung University. It's about famous deep reinforcement learning algorithm: Actor-Critc. In this slides, we introduce advantage function, A3C/A2C.]]>

The lecture slides in DSAI 2018, National Cheng Kung University. It's about famous deep reinforcement learning algorithm: Actor-Critc. In this slides, we introduce advantage function, A3C/A2C.]]>
Tue, 29 May 2018 12:17:09 GMT /slideshow/actor-critic-algorithm/99368105 zhihua98@slideshare.net(zhihua98) Actor critic algorithm zhihua98 The lecture slides in DSAI 2018, National Cheng Kung University. It's about famous deep reinforcement learning algorithm: Actor-Critc. In this slides, we introduce advantage function, A3C/A2C. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/actor-criticalgorithm-180529121709-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> The lecture slides in DSAI 2018, National Cheng Kung University. It&#39;s about famous deep reinforcement learning algorithm: Actor-Critc. In this slides, we introduce advantage function, A3C/A2C.
Actor critic algorithm from Jie-Han Chen
]]>
3237 5 https://cdn.slidesharecdn.com/ss_thumbnails/actor-criticalgorithm-180529121709-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Temporal difference learning /slideshow/temporal-difference-learning-98784490/98784490 temporaldifferencelearning-180525215339
Lecture slides of DSAI 2018 in National Cheng Kung University. Reinforcement Learning: Temporal-difference Learning, including Sarsa, Q-learning, n-step bootstrapping, eligibility trace.]]>

Lecture slides of DSAI 2018 in National Cheng Kung University. Reinforcement Learning: Temporal-difference Learning, including Sarsa, Q-learning, n-step bootstrapping, eligibility trace.]]>
Fri, 25 May 2018 21:53:39 GMT /slideshow/temporal-difference-learning-98784490/98784490 zhihua98@slideshare.net(zhihua98) Temporal difference learning zhihua98 Lecture slides of DSAI 2018 in National Cheng Kung University. Reinforcement Learning: Temporal-difference Learning, including Sarsa, Q-learning, n-step bootstrapping, eligibility trace. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/temporaldifferencelearning-180525215339-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Lecture slides of DSAI 2018 in National Cheng Kung University. Reinforcement Learning: Temporal-difference Learning, including Sarsa, Q-learning, n-step bootstrapping, eligibility trace.
Temporal difference learning from Jie-Han Chen
]]>
425 1 https://cdn.slidesharecdn.com/ss_thumbnails/temporaldifferencelearning-180525215339-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Policy gradient /slideshow/policy-gradient-98034864/98034864 policygradient-180522075401
Lecture slides in DASI spring 2018, National Cheng Kung University, Taiwan. The content is about deep reinforcement learning: policy gradient including variance reduction and importance sampling]]>

Lecture slides in DASI spring 2018, National Cheng Kung University, Taiwan. The content is about deep reinforcement learning: policy gradient including variance reduction and importance sampling]]>
Tue, 22 May 2018 07:54:01 GMT /slideshow/policy-gradient-98034864/98034864 zhihua98@slideshare.net(zhihua98) Policy gradient zhihua98 Lecture slides in DASI spring 2018, National Cheng Kung University, Taiwan. The content is about deep reinforcement learning: policy gradient including variance reduction and importance sampling <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/policygradient-180522075401-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Lecture slides in DASI spring 2018, National Cheng Kung University, Taiwan. The content is about deep reinforcement learning: policy gradient including variance reduction and importance sampling
Policy gradient from Jie-Han Chen
]]>
3887 1 https://cdn.slidesharecdn.com/ss_thumbnails/policygradient-180522075401-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Deep reinforcement learning /slideshow/deep-reinforcement-learning-98024701/98024701 deepreinforcementlearning-180522065017
This is the lecture slides for DASI spring 2018, National Cheng Kung University. Deep reinforcement learning presentation about Deep Q Network (DQN) (Nature 2015 version) ]]>

This is the lecture slides for DASI spring 2018, National Cheng Kung University. Deep reinforcement learning presentation about Deep Q Network (DQN) (Nature 2015 version) ]]>
Tue, 22 May 2018 06:50:16 GMT /slideshow/deep-reinforcement-learning-98024701/98024701 zhihua98@slideshare.net(zhihua98) Deep reinforcement learning zhihua98 This is the lecture slides for DASI spring 2018, National Cheng Kung University. Deep reinforcement learning presentation about Deep Q Network (DQN) (Nature 2015 version) <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/deepreinforcementlearning-180522065017-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This is the lecture slides for DASI spring 2018, National Cheng Kung University. Deep reinforcement learning presentation about Deep Q Network (DQN) (Nature 2015 version)
Deep reinforcement learning from Jie-Han Chen
]]>
345 1 https://cdn.slidesharecdn.com/ss_thumbnails/deepreinforcementlearning-180522065017-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Temporal difference learning /slideshow/temporal-difference-learning-97310401/97310401 temporaldifferencelearning-180516170453
A lecture slides about temporal-difference learning including n-step bootstrapping and TD(lambda)]]>

A lecture slides about temporal-difference learning including n-step bootstrapping and TD(lambda)]]>
Wed, 16 May 2018 17:04:53 GMT /slideshow/temporal-difference-learning-97310401/97310401 zhihua98@slideshare.net(zhihua98) Temporal difference learning zhihua98 A lecture slides about temporal-difference learning including n-step bootstrapping and TD(lambda) <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/temporaldifferencelearning-180516170453-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> A lecture slides about temporal-difference learning including n-step bootstrapping and TD(lambda)
Temporal difference learning from Jie-Han Chen
]]>
3024 2 https://cdn.slidesharecdn.com/ss_thumbnails/temporaldifferencelearning-180516170453-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Markov decision process /zhihua98/markov-decision-process-92062139 markovdecisionprocess-180327143503
An introduction to Markov decision process, this slides borrow much content from David Silver's reinforcement learning course in UCL]]>

An introduction to Markov decision process, this slides borrow much content from David Silver's reinforcement learning course in UCL]]>
Tue, 27 Mar 2018 14:35:03 GMT /zhihua98/markov-decision-process-92062139 zhihua98@slideshare.net(zhihua98) Markov decision process zhihua98 An introduction to Markov decision process, this slides borrow much content from David Silver's reinforcement learning course in UCL <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/markovdecisionprocess-180327143503-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> An introduction to Markov decision process, this slides borrow much content from David Silver&#39;s reinforcement learning course in UCL
Markov decision process from Jie-Han Chen
]]>
1485 3 https://cdn.slidesharecdn.com/ss_thumbnails/markovdecisionprocess-180327143503-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Multi armed bandit /slideshow/multi-armed-bandit/92061946 multi-armedbandit-180327143323
Multi-armed bandit problem]]>

Multi-armed bandit problem]]>
Tue, 27 Mar 2018 14:33:23 GMT /slideshow/multi-armed-bandit/92061946 zhihua98@slideshare.net(zhihua98) Multi armed bandit zhihua98 Multi-armed bandit problem <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/multi-armedbandit-180327143323-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Multi-armed bandit problem
Multi armed bandit from Jie-Han Chen
]]>
830 2 https://cdn.slidesharecdn.com/ss_thumbnails/multi-armedbandit-180327143323-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
An introduction to reinforcement learning /zhihua98/an-introduction-to-reinforcement-learning anintroductiontoreinforcementlearning-180327143107
an introduction to reinforcement learning, based on Sutton's textbook]]>

an introduction to reinforcement learning, based on Sutton's textbook]]>
Tue, 27 Mar 2018 14:31:07 GMT /zhihua98/an-introduction-to-reinforcement-learning zhihua98@slideshare.net(zhihua98) An introduction to reinforcement learning zhihua98 an introduction to reinforcement learning, based on Sutton's textbook <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/anintroductiontoreinforcementlearning-180327143107-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> an introduction to reinforcement learning, based on Sutton&#39;s textbook
An introduction to reinforcement learning from Jie-Han Chen
]]>
1057 4 https://cdn.slidesharecdn.com/ss_thumbnails/anintroductiontoreinforcementlearning-180327143107-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Discrete sequential prediction of continuous actions for deep RL /slideshow/discrete-sequential-prediction-of-continuous-actions-for-deep-rl/86391011 discretesequentialpredictionofcontinuousactionsfordeeprl1-180119065808
An RL value-based method to solve continuous action problem, proposed by Google Brain.]]>

An RL value-based method to solve continuous action problem, proposed by Google Brain.]]>
Fri, 19 Jan 2018 06:58:08 GMT /slideshow/discrete-sequential-prediction-of-continuous-actions-for-deep-rl/86391011 zhihua98@slideshare.net(zhihua98) Discrete sequential prediction of continuous actions for deep RL zhihua98 An RL value-based method to solve continuous action problem, proposed by Google Brain. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/discretesequentialpredictionofcontinuousactionsfordeeprl1-180119065808-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> An RL value-based method to solve continuous action problem, proposed by Google Brain.
Discrete sequential prediction of continuous actions for deep RL from Jie-Han Chen
]]>
423 1 https://cdn.slidesharecdn.com/ss_thumbnails/discretesequentialpredictionofcontinuousactionsfordeeprl1-180119065808-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Deep reinforcement learning from scratch /slideshow/deep-reinforcement-learning-from-scratch-84633163/84633163 deepreinforcementlearningfromscratch1-171221153614
an introduction about reinforcement learning from MDP to DQN]]>

an introduction about reinforcement learning from MDP to DQN]]>
Thu, 21 Dec 2017 15:36:14 GMT /slideshow/deep-reinforcement-learning-from-scratch-84633163/84633163 zhihua98@slideshare.net(zhihua98) Deep reinforcement learning from scratch zhihua98 an introduction about reinforcement learning from MDP to DQN <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/deepreinforcementlearningfromscratch1-171221153614-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> an introduction about reinforcement learning from MDP to DQN
Deep reinforcement learning from scratch from Jie-Han Chen
]]>
1170 3 https://cdn.slidesharecdn.com/ss_thumbnails/deepreinforcementlearningfromscratch1-171221153614-thumbnail.jpg?width=120&height=120&fit=bounds presentation 000000 http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
BiCNet presentation (multi-agent reinforcement learning) /slideshow/bicnet-presentation-multiagent-reinforcement-learning/79803028 bicnetpresentation-170915095746
This is a paper presentation for "Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games" which is proposed by Alibaba & UCL. They designed a reinforcement learning framework for multiagent to coordinate and collaborate among other agents.]]>

This is a paper presentation for "Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games" which is proposed by Alibaba & UCL. They designed a reinforcement learning framework for multiagent to coordinate and collaborate among other agents.]]>
Fri, 15 Sep 2017 09:57:46 GMT /slideshow/bicnet-presentation-multiagent-reinforcement-learning/79803028 zhihua98@slideshare.net(zhihua98) BiCNet presentation (multi-agent reinforcement learning) zhihua98 This is a paper presentation for "Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games" which is proposed by Alibaba & UCL. They designed a reinforcement learning framework for multiagent to coordinate and collaborate among other agents. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/bicnetpresentation-170915095746-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> This is a paper presentation for &quot;Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games&quot; which is proposed by Alibaba &amp; UCL. They designed a reinforcement learning framework for multiagent to coordinate and collaborate among other agents.
BiCNet presentation (multi-agent reinforcement learning) from Jie-Han Chen
]]>
349 3 https://cdn.slidesharecdn.com/ss_thumbnails/bicnetpresentation-170915095746-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Data science-toolchain /slideshow/data-sciencetoolchain/70540465 data-science-toolchain-161230021740
ß@ÊÇ Data Science Õn³Ìˆó¸æµÄͶӰƬ ƒÈÈÝÔÙ·ÖÏíһЩ Data Science •þʹÓÃµÄ Tool demo code: https://github.com/JIElite/ikdd-course-presentation]]>

ß@ÊÇ Data Science Õn³Ìˆó¸æµÄͶӰƬ ƒÈÈÝÔÙ·ÖÏíһЩ Data Science •þʹÓÃµÄ Tool demo code: https://github.com/JIElite/ikdd-course-presentation]]>
Fri, 30 Dec 2016 02:17:39 GMT /slideshow/data-sciencetoolchain/70540465 zhihua98@slideshare.net(zhihua98) Data science-toolchain zhihua98 ß@ÊÇ Data Science Õn³Ìˆó¸æµÄͶӰƬ ƒÈÈÝÔÙ·ÖÏíһЩ Data Science •þʹÓÃµÄ Tool demo code: https://github.com/JIElite/ikdd-course-presentation <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/data-science-toolchain-161230021740-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> ß@ÊÇ Data Science Õn³Ìˆó¸æµÄͶӰƬ ƒÈÈÝÔÙ·ÖÏíһЩ Data Science •þʹÓÃµÄ Tool demo code: https://github.com/JIElite/ikdd-course-presentation
Data science-toolchain from Jie-Han Chen
]]>
2426 11 https://cdn.slidesharecdn.com/ss_thumbnails/data-science-toolchain-161230021740-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
The artofreadablecode /slideshow/the-artofreadablecode/69757838 theartofreadablecode-161202113123
presentation after reading &lt;the>]]>

presentation after reading &lt;the>]]>
Fri, 02 Dec 2016 11:31:23 GMT /slideshow/the-artofreadablecode/69757838 zhihua98@slideshare.net(zhihua98) The artofreadablecode zhihua98 presentation after reading &lt;the> <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/theartofreadablecode-161202113123-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> presentation after reading &amp;lt;the&gt;
The artofreadablecode from Jie-Han Chen
]]>
102 2 https://cdn.slidesharecdn.com/ss_thumbnails/theartofreadablecode-161202113123-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
https://cdn.slidesharecdn.com/profile-photo-zhihua98-48x48.jpg?cb=1679182906 Focus on machine learning, especially on deep reinforcement learning and deep learning model. https://cdn.slidesharecdn.com/ss_thumbnails/frontierinreinforcementlearning-180529122000-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/frontier-in-reinforcement-learning/99368276 Frontier in reinforcem... https://cdn.slidesharecdn.com/ss_thumbnails/actor-criticalgorithm-180529121709-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/actor-critic-algorithm/99368105 Actor critic algorithm https://cdn.slidesharecdn.com/ss_thumbnails/temporaldifferencelearning-180525215339-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/temporal-difference-learning-98784490/98784490 Temporal difference le...