際際滷

際際滷Share a Scribd company logo
Kh畉o s叩t hm s畛
    + N畉u m 孫 0 , y蔵 続 0, "x  (0; m) khi m > 0 ho畉c y蔵 続 0, "x  (m; 0) khi m < 0 .
    V畉y hm s畛 畛ng bi畉n trong kho畉ng ( x1; x2 ) v畛i x2 - x1 = 1
         辿( x ; x ) = (0; m)
                          v x2 - x1 = 1  棚 m - 0 = 1  m = 賊1 .
                                                    辿
     棚 1 2
      谷( x1; x2 ) = (m;0)                  谷0 - m = 1


C但u 9.  Cho hm s畛 y = x 4 - 2mx 2 - 3m + 1 (1), (m l tham s畛).
    1) Kh畉o s叩t s畛 bi畉n thi棚n v v畉 畛 th畛 c畛a hm s畛 (1) khi m = 1.
    2) T狸m m 畛 hm s畛 (1) 畛ng bi畉n tr棚n kho畉ng (1; 2).
    揃 Ta c坦 y ' = 4 x 3 - 4mx = 4 x( x 2 - m)
    + m 贈 0 , y 蔵続 0, "x  (0; +促)  m 贈 0 tho畉 m達n.
    + m > 0 , y 蔵= 0 c坦 3 nghi畛m ph但n bi畛t: - m , 0,                      m.
    Hm s畛 (1) 畛ng bi畉n tr棚n (1; 2)  m 贈 1  0 < m 贈 1 .               V畉y m  ( -促;1湛 .
                                                                                       短
    C但u h畛i t動董ng t畛:
    a) V畛i y = x 4 - 2(m - 1) x 2 + m - 2 ; y 畛ng bi畉n tr棚n kho畉ng (1;3) .    S: m 贈 2 .

                               mx + 4
C但u 10. Cho hm s畛 y =                      (1)
                               x+m
    1) Kh畉o s叩t s畛 bi畉n thi棚n v v畉 畛 th畛 c畛a hm s畛 (1) khi m = -1 .
    2) T狸m t畉t c畉 c叩c gi叩 tr畛 c畛a tham s畛 m 畛 hm s畛 (1) ngh畛ch bi畉n tr棚n kho畉ng (-促;1) .
                                                        m2 - 4
    揃 T畉p x叩c 畛nh: D = R  {m}.            y 蔵=                .
                                                    ( x + m)2
    Hm s畛 ngh畛ch bi畉n tr棚n t畛ng kho畉ng x叩c 畛nh  y 蔵< 0  -2 < m < 2           (1)
    畛 hm s畛 (1) ngh畛ch bi畉n tr棚n kho畉ng (-促;1) th狸 ta ph畉i c坦 - m 続 1  m 贈 -1 (2)
    K畉t h畛p (1) v (2) ta 動畛c: -2 < m 贈 -1 .

                               2 x 2 - 3x + m
C但u 11. Cho hm s畛 y =                        (2).
                                     x -1
    T狸m m 畛 hm s畛 (2) 畛ng bi畉n tr棚n kho畉ng (-促; -1) .
                                            2x2 - 4x + 3 - m               f (x)
    揃 T畉p x叩c 畛nh: D = R  {1} . y ' =                    2
                                                                     =               .
                                                  ( x - 1)               ( x - 1)2
    Ta c坦: f ( x ) 続 0  m 贈 2 x 2 - 4 x + 3 . 畉t g( x ) = 2 x 2 - 4 x + 3  g '( x ) = 4 x - 4
    Hm s畛 (2) 畛ng bi畉n tr棚n (-促; -1)  y ' 続 0, "x  (-促; -1)  m 贈 min g( x )
                                                                                           ( -促;-1]
    D畛a vo BBT c畛a hm s畛 g( x ), "x  (-促; -1] ta suy ra m 贈 9 .
    V畉y m 贈 9 th狸 hm s畛 (2) 畛ng bi畉n tr棚n (-促; -1)

                               2 x 2 - 3x + m
C但u 12. Cho hm s畛 y =                        (2).
                                     x -1
    T狸m m 畛 hm s畛 (2) 畛ng bi畉n tr棚n kho畉ng (2; +促) .
                                            2x2 - 4x + 3 - m               f (x)
    揃 T畉p x叩c 畛nh: D = R  {1} . y ' =                    2
                                                                     =               .
                                                  ( x - 1)               ( x - 1)2
    Ta c坦: f ( x ) 続 0  m 贈 2 x 2 - 4 x + 3 . 畉t g( x ) = 2 x 2 - 4 x + 3  g '( x ) = 4 x - 4
    Hm s畛 (2) 畛ng bi畉n tr棚n (2; +促)  y ' 続 0, "x  (2; +促)  m 贈 min g( x )
                                                                                         [2; +促 )


                                                         Trang 7

More Related Content

200 cau-khaosathamso2 (1) 08

  • 1. Kh畉o s叩t hm s畛 + N畉u m 孫 0 , y蔵 続 0, "x (0; m) khi m > 0 ho畉c y蔵 続 0, "x (m; 0) khi m < 0 . V畉y hm s畛 畛ng bi畉n trong kho畉ng ( x1; x2 ) v畛i x2 - x1 = 1 辿( x ; x ) = (0; m) v x2 - x1 = 1 棚 m - 0 = 1 m = 賊1 . 辿 棚 1 2 谷( x1; x2 ) = (m;0) 谷0 - m = 1 C但u 9. Cho hm s畛 y = x 4 - 2mx 2 - 3m + 1 (1), (m l tham s畛). 1) Kh畉o s叩t s畛 bi畉n thi棚n v v畉 畛 th畛 c畛a hm s畛 (1) khi m = 1. 2) T狸m m 畛 hm s畛 (1) 畛ng bi畉n tr棚n kho畉ng (1; 2). 揃 Ta c坦 y ' = 4 x 3 - 4mx = 4 x( x 2 - m) + m 贈 0 , y 蔵続 0, "x (0; +促) m 贈 0 tho畉 m達n. + m > 0 , y 蔵= 0 c坦 3 nghi畛m ph但n bi畛t: - m , 0, m. Hm s畛 (1) 畛ng bi畉n tr棚n (1; 2) m 贈 1 0 < m 贈 1 . V畉y m ( -促;1湛 . 短 C但u h畛i t動董ng t畛: a) V畛i y = x 4 - 2(m - 1) x 2 + m - 2 ; y 畛ng bi畉n tr棚n kho畉ng (1;3) . S: m 贈 2 . mx + 4 C但u 10. Cho hm s畛 y = (1) x+m 1) Kh畉o s叩t s畛 bi畉n thi棚n v v畉 畛 th畛 c畛a hm s畛 (1) khi m = -1 . 2) T狸m t畉t c畉 c叩c gi叩 tr畛 c畛a tham s畛 m 畛 hm s畛 (1) ngh畛ch bi畉n tr棚n kho畉ng (-促;1) . m2 - 4 揃 T畉p x叩c 畛nh: D = R {m}. y 蔵= . ( x + m)2 Hm s畛 ngh畛ch bi畉n tr棚n t畛ng kho畉ng x叩c 畛nh y 蔵< 0 -2 < m < 2 (1) 畛 hm s畛 (1) ngh畛ch bi畉n tr棚n kho畉ng (-促;1) th狸 ta ph畉i c坦 - m 続 1 m 贈 -1 (2) K畉t h畛p (1) v (2) ta 動畛c: -2 < m 贈 -1 . 2 x 2 - 3x + m C但u 11. Cho hm s畛 y = (2). x -1 T狸m m 畛 hm s畛 (2) 畛ng bi畉n tr棚n kho畉ng (-促; -1) . 2x2 - 4x + 3 - m f (x) 揃 T畉p x叩c 畛nh: D = R {1} . y ' = 2 = . ( x - 1) ( x - 1)2 Ta c坦: f ( x ) 続 0 m 贈 2 x 2 - 4 x + 3 . 畉t g( x ) = 2 x 2 - 4 x + 3 g '( x ) = 4 x - 4 Hm s畛 (2) 畛ng bi畉n tr棚n (-促; -1) y ' 続 0, "x (-促; -1) m 贈 min g( x ) ( -促;-1] D畛a vo BBT c畛a hm s畛 g( x ), "x (-促; -1] ta suy ra m 贈 9 . V畉y m 贈 9 th狸 hm s畛 (2) 畛ng bi畉n tr棚n (-促; -1) 2 x 2 - 3x + m C但u 12. Cho hm s畛 y = (2). x -1 T狸m m 畛 hm s畛 (2) 畛ng bi畉n tr棚n kho畉ng (2; +促) . 2x2 - 4x + 3 - m f (x) 揃 T畉p x叩c 畛nh: D = R {1} . y ' = 2 = . ( x - 1) ( x - 1)2 Ta c坦: f ( x ) 続 0 m 贈 2 x 2 - 4 x + 3 . 畉t g( x ) = 2 x 2 - 4 x + 3 g '( x ) = 4 x - 4 Hm s畛 (2) 畛ng bi畉n tr棚n (2; +促) y ' 続 0, "x (2; +促) m 贈 min g( x ) [2; +促 ) Trang 7