ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Mathematics
Session
Functions, Limits and Continuity-1
? Function
? Domain and Range
? Some Standard Real Functions
? Algebra of Real Functions
? Even and Odd Functions
? Limit of a Function; Left Hand and Right Hand Limit
? Algebraic Limits : Substitution Method, Factorisation Method,
Rationalization Method
? Standard Result
Session Objectives
Function
If f is a function from a set A to a set B, we represent it by
? : A B¡ú
If A and B are two non-empty sets, then a rule which associates
each element of A with a unique element of B is called a function
from a set A to a set B.
( )y = ? x .
x A to y B,¡Ê ¡ÊIf f associates then we say that y is the image of the
element x under the function or mapping and we write
Real Functions: Functions whose co-domain, is a subset of R
are called real functions.
Domain and Range
The set of the images of all the elements under the mapping
or function f is called the range of the function f and represented
by f(A).
( ) ( ){ }The range of f or ? A = ? x : x A¡Ê ( )and ? A B?
The set A is called the domain of the function and the set B is
called co-domain.
? : A B¡ú
()
Valueofafunction:
IfaA,thenfaiscalledthevalueoffata. ¡Ê
Domain and Range (Cont.)
For example: Consider a function f from the set of natural
numbers N to the set of natural numbers N
i.e. f : N ¡úN given by f(x) = x2
Domain is the set N itself as the function is defined for all values of N.
Range is the set of squares of all natural numbers.
Range = {1, 4, 9, 16 . . . }
Example¨C 1
Find the domain of the following functions:
( ) ( ) 2
i f x = 9- x ( ) 2
x
ii f(x)=
x -3x+2
( ) 2
Solution: We have f x = 9- x
( )The function f x is defined for
[ ]-3 x 3 x -3, 3? ¡Ü ¡Ü ? ¡Ê
( ) ( )2 2
9- x 0 x -9 0 x-3 x+3 0¡Ý ? ¡Ü ? ¡Ü
Domain of f = -3, 3¡à ? ?? ?
( ) 2
x
Solution: ii We have f(x)=
x -3x+2
The function f(x) is not defined for the values of x for which the
denominator becomes zero
Hence, domain of f = R ¨C {1, 2}
Example¨C 1 (ii)
( ) ( )2
i.e. x -3x+2=0 x-1 x-2 =0 x =1, 2? ?
Example- 2
[ )Hence, range of f = 0 , ¡Þ
Find the range of the following functions:
( ) ( )i f x = x-3 ( ) ( )ii f x = 1 + 3cos2x
( ) ( )Solution: i We have f x = x-3
( )f x is defined for all x R.
Domain of f = R
¡Ê
¡à
| x - 3 | 0 for all x R¡Ý ¡Ê
| x - 3 | for all x R0? ¡Ü < ¡Þ ¡Ê
( )f x for all x R0? ¡Ü < ¡Þ ¡Ê
-1 ¡Ü cos2x ¡Ü 1 for all x¡ÊR
?-3 ¡Ü 3cos2x ¡Ü 3 for all x¡ÊR
?-2 ¡Ü 1 + 3cos2x ¡Ü 4 for all x¡ÊR
? -2 ¡Ü f(x) ¡Ü 4
Hence , range of f = [-2, 4]
Example ¨C 2(ii)
( ) ( )Solution : ii We have f x = 1 + 3cos2x
( )Domain of cosx is R. f x is defined for all x R
Domain of f = R
¡à ¡Ê
¡à
Q
Some Standard Real Functions
(Constant Function)
( )
A function f : R R is defined by
f x = c for all x R, where c is a real number.fixed
¡ú
¡Ê
O
Y
X
(0, c) f(x) = c
Domain = R
Range = {c}
Domain = R
Range = R
Identity Function
( )
A function I : R R is defined by
I x = x for all x R
¡ú
¡Ê
X
Y
O
450
I(x) = x
Modulus Function
( )
A function f : R R is defined by
x, x 0
f x = x =
-x, x < 0
¡ú
¡Ý?
?
?
f(x) = xf(x) = - x
O
X
Y
Domain = R
Range = Non-negative real numbers
y = sinx
¨C ¦Ð O
y
2 ¦Ð
1
x
¨C 2 ¦Ð ¦Ð
¨C ¦Ð
O
y
¨C 1
2 ¦Ð
1
x
¨C 2 ¦Ð ¦Ð
y = |sinx|
Example
Greatest Integer Function
= greatest integer less than or equal to x.
( )
A function f : R R is defined by
f x = x for all x R
¡ú
¡Ê? ?? ?
For example : 2.4 = 2, -3.2 = -4 etc.? ? ? ?? ? ? ?
Algebra of Real Functions
1 2Let ? :D R and g:D R be two functions. Then,¡ú ¡ú
1 2Addition: ? + g: D D R such that¡É ¡ú
( ) ( ) ( ) ( ) 1 2? + g x = ? x + g x for all x D D¡Ê ¡É
1 2Subtraction: ? - g:D D R such that¡É ¡ú
( ) ( ) ( ) ( ) 1 2? - g x = ? x - g x for all x D D¡Ê ¡É
Multiplication by a scalar: For any real number k, the function kf is
defined by
( ) ( ) ( ) 1k? x = k? x such that x D¡Ê
Algebra of Real Functions (Cont.)
1 2Product : ?g: D D R such that¡É ¡ú
( ) ( ) ( ) ( ) 1 2?g x = ? x g x for all x D D¡Ê ¡É
( ){ }1 2
?
Quotient : D D - x : g x = 0 R such that
g
: ¡É ¡ú
( )
( )
( )
( ){ }1 2
? x?
x = for all x D D - x : g x = 0
g g x
? ?
¡Ê ¡É? ¡Â
? ?
Composition of Two Functions
1 2Let ? :D R and g:D R be two functions. Then,¡ú ¡ú
( ) ( )( ) ( ) ( )
2fog:D R such that
fog x = ? g x , Range of g Domain of ?
¡ú
?
( ) ( )( ) ( ) ( )
1gof :D R such that
gof x =g f x , Range of f Domain of g
¡ú
?
Let f : R ¡ú R+
such that f(x) = ex
and g(x) : R+
¡ú R such
that g(x) = log x, then find
(i) (f+g)(1) (ii) (fg)(1)
(iii) (3f)(1) (iv) (fog)(1) (v) (gof)(1)
(i) (f+g)(1) (ii) (fg)(1) (iii) (3f)(1)
= f(1) + g(1) =f(1)g(1) =3 f(1)
= e1
+ log(1) =e1
log(1) =3 e1
= e + 0 = e x 0 =3 e
= e = 0
Example - 3
Solution :
(iv) (fog)(1) (v) (gof)(1)
= f(g(1)) = g(f(1))
= f(log1) = g(e1
)
= f(0) = g(e)
= e0
= log(e)
=1 = 1
Find fog and gof if f : R ¡ú R such that f(x) = [x]
and g : R ¡ú [-1, 1] such that g(x) = sinx.
Solution: We have f(x)= [x] and g(x) = sinx
fog(x) = f(g(x)) = f(sinx) = [sin x]
gof(x) = g(f(x)) = g ([x]) = sin [x]
Example ¨C 4
Even and Odd Functions
Even Function : If f(-x) = f(x) for all x, then
f(x) is called an even function.
Example: f(x)= cosx
Odd Function : If f(-x)= - f(x) for all x, then
f(x) is called an odd function.
Example: f(x)= sinx
Example ¨C 5
( ) 2
Solution : We have f x = x - | x |
( ) ( )2
f -x = -x - | -x |¡à
( ) 2
f -x = x - | x |?
( ) ( )f -x = f x?
( )f x is an even function.¡à
Prove that is an even function.
2
x - | x |
Example - 6
Let the function f be f(x) = x3
- kx2
+ 2x, x¡ÊR, then
find k such that f is an odd function.
Solution:
The function f would be an odd function if f(-x) = - f(x)
? (- x)3
- k(- x)2
+ 2(- x) = - (x3
- kx2
+ 2x) for all x¡ÊR
? 2kx2
= 0 for all x¡ÊR
? k = 0
? -x3
- kx2
- 2x = - x3
+ kx2
- 2x for all x¡ÊR
Limit of a Function
2
(x - 9) (x - 3)(x +3)
If x 3, f(x) = = = (x +3)
x - 3 (x - 3)
¡Ù
x 2.5 2.6 2.7 2.8 2.9 2.99 3.01 3.1 3.2 3.3 3.4 3.5
f(x) 5.5 5.6 5.7 5.8 5.9 5.99 6.01 6.1 6.2 6.3 6.4 6.5
2
x - 9
f(x) = is defined for all x except at x = 3.
x - 3
As x approaches 3 from left hand side of the number
line, f(x) increases and becomes close to 6
-x 3
lim f(x) = 6i.e.
¡ú
Limit of a Function (Cont.)
Similarly, as x approaches 3 from right hand side
of the number line, f(x) decreases and becomes
close to 6
+x 3
i.e. lim f(x) = 6
¡ú
x takes the values
2.91
2.95
2.9991
..
2.9999 ¡­¡­. 9221 etc.
x 3¡Ù
Left Hand Limit
x
3
Y
O
X
-x 3
lim
¡ú
x takes the values 3.1
3.002
3.000005
¡­¡­..
3.00000000000257 etc.
x 3¡Ù
Right Hand Limit
3
X
Y
O
x
+x 3
lim
¡ú
Existence Theorem on Limits
( ) ( ) ( )- +x a x a x a
lim ? x exists iff lim ? x and lim ? x exist and are equal.
¡ú ¡ú ¡ú
( ) ( ) ( )- +x a x a x a
lim ? x exists lim ? x = lim ? xi.e.
¡ú ¡ú ¡ú
?
Example ¨C 7
Which of the following limits exist:
( ) x 0
x
i lim
x¡ú
[ ]5
x
2
(ii) lim x
¡ú
( ) ( )
x
Solution : i Let f x =
x
( ) ( ) ( )- h 0 h 0 h 0x 0
0 - h -h
LHL at x = 0 = lim f x = limf 0 - h =lim =lim = -1
0 - h h¡ú ¡ú ¡ú¡ú
( ) ( ) ( )+ h 0 h 0 h 0x 0
0 + h h
RHL at x = 0 = lim f x = limf 0 + h =lim =lim = 1
0 + h h¡ú ¡ú ¡ú¡ú
( ) ( )- +
x 0 x 0
lim f x lim f x
¡ú ¡ú
¡ÙQ x 0
x
lim does not exist.
x¡ú
¡à
Example - 7 (ii)
( ) [ ]Solution:(ii) Let f x = x
( ) h 0 h 05
x
2
5 5 5
LHL at x = = lim f x =limf -h =lim -h =2
2 2 2? ¡ú ¡ú
¡ú
? ? ? ? ? ?
? ¡Â ? ¡Â ? ?? ? ? ? ? ?
( ) h 0 h 05
x
2
5 5 5
RHL at x = = lim f x =limf +h =lim +h =2
2 2 2+ ¡ú ¡ú
¡ú
? ? ? ? ? ?
? ¡Â ? ¡Â ? ?? ? ? ? ? ?
( ) ( )5 5
x x
2 2
lim f x lim f x? +
¡ú ¡ú
=Q [ ]5
x
2
lim x exists.
¡ú
¡à
Properties of Limits
( )
x a x a x a
i lim [f(x) g(x)]= lim f(x) lim g(x) = m n
¡ú ¡ú ¡ú
¡À ¡À ¡À
( )
x a x a
ii lim [cf(x)]= c. lim f(x) = c.m
¡ú ¡ú
( ) ( )
x a x a x a
iii lim f(x). g(x) = lim f(x) . lim g(x) = m.n
¡ú ¡ú ¡ú
( )
x a
x a
x a
lim f(x)
f(x) m
iv lim = = , provided n 0
g(x) lim g(x) n
¡ú
¡ú
¡ú
¡Ù
If and
where ¡®m¡¯ and ¡®n¡¯ are real and finite then
x a
lim g(x)= n
¡úx a
lim f(x)= m
¡ú
The limit can be found directly by substituting the value of x.
Algebraic Limits (Substitution Method)
( )2
x 2
For example : lim 2x +3x + 4
¡ú
( ) ( )2
= 2 2 +3 2 + 4 = 8+6+ 4 =18
2 2
x 2
x +6 2 +6 10 5
lim = = =
x+2 2+2 4 2¡ú
Algebraic Limits (Factorization Method)
When we substitute the value of x in the rational expression it
takes the form
0
.
0
2
2x 3
x -3x+2x-6
=lim
x (x-3)+1(x-3)¡ú
2x 3
(x-3)(x+2)
=lim
(x +1)(x-3)¡ú
2 2x 3
x-2 3-2 1
=lim = =
10x +1 3 +1¡ú
2
3 2x 3
x -x-6 0
For example: lim form
0x -3x +x-3¡ú
? ?
? ?? ?
Algebraic Limits (Rationalization Method)
When we substitute the value of x in the rational expression it
takes the form
0
, etc.
0
¡Þ
¡Þ
[ ]
2 2
2 2x 4
x -16 ( x +9 +5)
=lim ¡Á Rationalizing the denominator
( x +9 -5) ( x +9 +5)¡ú
2
2
2x 4
x -16
=lim ¡Á( x +9 +5)
(x +9-25)¡ú
2
2
2x 4
x -16
=lim ¡Á( x +9 +5)
x -16¡ú
2 2
x 4
=lim( x +9 +5) = 4 +9 +5 = 5+5=10
¡ú
2
2x 4
x -16 0
For example: lim form
0x +9 -5¡ú
? ?
? ?? ?
Standard Result
n n
n-1
x a
x - a
lim = n a
x - a¡ú
If n is any rational number, then
0
form
0
? ?
? ?
? ?
3
2
x 5
x -125
Evaluate: lim
x -7x+10¡ú
( )
333
2 2x 5 x 5
x - 5x -125
Solution: lim =lim
x -7x+10 x -5x-2x-10¡ú ¡ú
Example ¨C 8 (i)
2
x 5
(x-5)(x +5x+25)
=lim
(x-2)(x-5)¡ú
2
x 5
(x +5x+25)
=lim
x-2¡ú
2
5 +5¡Á5+25 25+25+25
= = =25
5-2 3
2
x 3
1 1
Evaluate: lim (x -9) +
x+3 x-3¡ú
? ?
? ?? ?
2
x 3
1 1
Solution: lim (x -9) +
x+3 x-3¡ú
? ?
? ?? ?
x 3
x-3+x+3
=lim(x+3)(x-3)
(x+3)(x-3)¡ú
? ?
? ?
? ?
Example ¨C 8 (ii)
=2¡Á3=6
x 3
=lim 2x
¡ú
x a
a+2x - 3x
Evaluate:lim
3a+x -2 x¡ú
x a
a+2x - 3x
Solution: lim
3a+x -2 x¡ú
[ ]x a
a+2x - 3x 3a+x +2 x
=lim ¡Á Rationalizing the denominator
3a+x -2 x 3a+x +2 x¡ú
Example ¨C 8 (iii)
x a
a+2x - 3x
=lim ¡Á 3a+x +2 x
3a+x- 4x¡ú
[ ]x a
3a+x +2 x a+2x + 3x
=lim ¡Á a+2x - 3x¡Á Rationalizing thenumerator
3(a- x) a+2x + 3x¡ú
x a
3a+x +2 x a+2x-3x
=lim ¡Á
3(a- x)a+2x + 3x¡ú
Solution Cont.
x a
3a+x +2 x a- x
=lim ¡Á
3(a- x)a+2x + 3x¡ú
x a
3a+x +2 x 1
=lim ¡Á
3a+2x + 3x¡ú
3a+a+2 a 1 2 a+2 a 1
= ¡Á = ¡Á
3 3a+2a+ 3a 3a+ 3a
4 a 1 2
= ¡Á =
32 3a 3 3
2x 1
3+x - 5- x
Evaluate: lim
x -1¡ú
2x 1
3+x - 5- x
Solution: lim
x -1¡ú
[ ]2x 1
3+x - 5- x 3+x + 5- x
=lim ¡Á Rationalizing the numerator
x -1 3+x + 5- x¡ú
Example ¨C 8 (iv)
2x 1
3+x-5+x 1
=lim ¡Á
x -1 3+x + 5-x¡ú x 1
2(x-1) 1
=lim ¡Á
(x-1)(x+1) 3+x + 5- x¡ú
( ) ( )x 1
2
=lim
x+1 3+x + 5- x¡ú
2 1
= =
42( 4 + 4)
( ) ( )
2
=
1+1 3+1+ 5-1
5 5
x a
x -a
If lim = 405, find all possible values of a.
x-a¡ú
5 5
x a
x -a
Solution: We have lim = 405
x-a¡ú
Example ¨C 8 (v)
n n
5-1 n-1
x a
x -a
5 a = 405 lim = na
x-a¡ú
? ?
? ? ¡Â
? ?
Q
4
a =81?
a=¡À 3?
Thank you

More Related Content

functions limits and continuity

  • 3. ? Function ? Domain and Range ? Some Standard Real Functions ? Algebra of Real Functions ? Even and Odd Functions ? Limit of a Function; Left Hand and Right Hand Limit ? Algebraic Limits : Substitution Method, Factorisation Method, Rationalization Method ? Standard Result Session Objectives
  • 4. Function If f is a function from a set A to a set B, we represent it by ? : A B¡ú If A and B are two non-empty sets, then a rule which associates each element of A with a unique element of B is called a function from a set A to a set B. ( )y = ? x . x A to y B,¡Ê ¡ÊIf f associates then we say that y is the image of the element x under the function or mapping and we write Real Functions: Functions whose co-domain, is a subset of R are called real functions.
  • 5. Domain and Range The set of the images of all the elements under the mapping or function f is called the range of the function f and represented by f(A). ( ) ( ){ }The range of f or ? A = ? x : x A¡Ê ( )and ? A B? The set A is called the domain of the function and the set B is called co-domain. ? : A B¡ú () Valueofafunction: IfaA,thenfaiscalledthevalueoffata. ¡Ê
  • 6. Domain and Range (Cont.) For example: Consider a function f from the set of natural numbers N to the set of natural numbers N i.e. f : N ¡úN given by f(x) = x2 Domain is the set N itself as the function is defined for all values of N. Range is the set of squares of all natural numbers. Range = {1, 4, 9, 16 . . . }
  • 7. Example¨C 1 Find the domain of the following functions: ( ) ( ) 2 i f x = 9- x ( ) 2 x ii f(x)= x -3x+2 ( ) 2 Solution: We have f x = 9- x ( )The function f x is defined for [ ]-3 x 3 x -3, 3? ¡Ü ¡Ü ? ¡Ê ( ) ( )2 2 9- x 0 x -9 0 x-3 x+3 0¡Ý ? ¡Ü ? ¡Ü Domain of f = -3, 3¡à ? ?? ?
  • 8. ( ) 2 x Solution: ii We have f(x)= x -3x+2 The function f(x) is not defined for the values of x for which the denominator becomes zero Hence, domain of f = R ¨C {1, 2} Example¨C 1 (ii) ( ) ( )2 i.e. x -3x+2=0 x-1 x-2 =0 x =1, 2? ?
  • 9. Example- 2 [ )Hence, range of f = 0 , ¡Þ Find the range of the following functions: ( ) ( )i f x = x-3 ( ) ( )ii f x = 1 + 3cos2x ( ) ( )Solution: i We have f x = x-3 ( )f x is defined for all x R. Domain of f = R ¡Ê ¡à | x - 3 | 0 for all x R¡Ý ¡Ê | x - 3 | for all x R0? ¡Ü < ¡Þ ¡Ê ( )f x for all x R0? ¡Ü < ¡Þ ¡Ê
  • 10. -1 ¡Ü cos2x ¡Ü 1 for all x¡ÊR ?-3 ¡Ü 3cos2x ¡Ü 3 for all x¡ÊR ?-2 ¡Ü 1 + 3cos2x ¡Ü 4 for all x¡ÊR ? -2 ¡Ü f(x) ¡Ü 4 Hence , range of f = [-2, 4] Example ¨C 2(ii) ( ) ( )Solution : ii We have f x = 1 + 3cos2x ( )Domain of cosx is R. f x is defined for all x R Domain of f = R ¡à ¡Ê ¡à Q
  • 11. Some Standard Real Functions (Constant Function) ( ) A function f : R R is defined by f x = c for all x R, where c is a real number.fixed ¡ú ¡Ê O Y X (0, c) f(x) = c Domain = R Range = {c}
  • 12. Domain = R Range = R Identity Function ( ) A function I : R R is defined by I x = x for all x R ¡ú ¡Ê X Y O 450 I(x) = x
  • 13. Modulus Function ( ) A function f : R R is defined by x, x 0 f x = x = -x, x < 0 ¡ú ¡Ý? ? ? f(x) = xf(x) = - x O X Y Domain = R Range = Non-negative real numbers
  • 14. y = sinx ¨C ¦Ð O y 2 ¦Ð 1 x ¨C 2 ¦Ð ¦Ð ¨C ¦Ð O y ¨C 1 2 ¦Ð 1 x ¨C 2 ¦Ð ¦Ð y = |sinx| Example
  • 15. Greatest Integer Function = greatest integer less than or equal to x. ( ) A function f : R R is defined by f x = x for all x R ¡ú ¡Ê? ?? ? For example : 2.4 = 2, -3.2 = -4 etc.? ? ? ?? ? ? ?
  • 16. Algebra of Real Functions 1 2Let ? :D R and g:D R be two functions. Then,¡ú ¡ú 1 2Addition: ? + g: D D R such that¡É ¡ú ( ) ( ) ( ) ( ) 1 2? + g x = ? x + g x for all x D D¡Ê ¡É 1 2Subtraction: ? - g:D D R such that¡É ¡ú ( ) ( ) ( ) ( ) 1 2? - g x = ? x - g x for all x D D¡Ê ¡É Multiplication by a scalar: For any real number k, the function kf is defined by ( ) ( ) ( ) 1k? x = k? x such that x D¡Ê
  • 17. Algebra of Real Functions (Cont.) 1 2Product : ?g: D D R such that¡É ¡ú ( ) ( ) ( ) ( ) 1 2?g x = ? x g x for all x D D¡Ê ¡É ( ){ }1 2 ? Quotient : D D - x : g x = 0 R such that g : ¡É ¡ú ( ) ( ) ( ) ( ){ }1 2 ? x? x = for all x D D - x : g x = 0 g g x ? ? ¡Ê ¡É? ¡Â ? ?
  • 18. Composition of Two Functions 1 2Let ? :D R and g:D R be two functions. Then,¡ú ¡ú ( ) ( )( ) ( ) ( ) 2fog:D R such that fog x = ? g x , Range of g Domain of ? ¡ú ? ( ) ( )( ) ( ) ( ) 1gof :D R such that gof x =g f x , Range of f Domain of g ¡ú ?
  • 19. Let f : R ¡ú R+ such that f(x) = ex and g(x) : R+ ¡ú R such that g(x) = log x, then find (i) (f+g)(1) (ii) (fg)(1) (iii) (3f)(1) (iv) (fog)(1) (v) (gof)(1) (i) (f+g)(1) (ii) (fg)(1) (iii) (3f)(1) = f(1) + g(1) =f(1)g(1) =3 f(1) = e1 + log(1) =e1 log(1) =3 e1 = e + 0 = e x 0 =3 e = e = 0 Example - 3 Solution : (iv) (fog)(1) (v) (gof)(1) = f(g(1)) = g(f(1)) = f(log1) = g(e1 ) = f(0) = g(e) = e0 = log(e) =1 = 1
  • 20. Find fog and gof if f : R ¡ú R such that f(x) = [x] and g : R ¡ú [-1, 1] such that g(x) = sinx. Solution: We have f(x)= [x] and g(x) = sinx fog(x) = f(g(x)) = f(sinx) = [sin x] gof(x) = g(f(x)) = g ([x]) = sin [x] Example ¨C 4
  • 21. Even and Odd Functions Even Function : If f(-x) = f(x) for all x, then f(x) is called an even function. Example: f(x)= cosx Odd Function : If f(-x)= - f(x) for all x, then f(x) is called an odd function. Example: f(x)= sinx
  • 22. Example ¨C 5 ( ) 2 Solution : We have f x = x - | x | ( ) ( )2 f -x = -x - | -x |¡à ( ) 2 f -x = x - | x |? ( ) ( )f -x = f x? ( )f x is an even function.¡à Prove that is an even function. 2 x - | x |
  • 23. Example - 6 Let the function f be f(x) = x3 - kx2 + 2x, x¡ÊR, then find k such that f is an odd function. Solution: The function f would be an odd function if f(-x) = - f(x) ? (- x)3 - k(- x)2 + 2(- x) = - (x3 - kx2 + 2x) for all x¡ÊR ? 2kx2 = 0 for all x¡ÊR ? k = 0 ? -x3 - kx2 - 2x = - x3 + kx2 - 2x for all x¡ÊR
  • 24. Limit of a Function 2 (x - 9) (x - 3)(x +3) If x 3, f(x) = = = (x +3) x - 3 (x - 3) ¡Ù x 2.5 2.6 2.7 2.8 2.9 2.99 3.01 3.1 3.2 3.3 3.4 3.5 f(x) 5.5 5.6 5.7 5.8 5.9 5.99 6.01 6.1 6.2 6.3 6.4 6.5 2 x - 9 f(x) = is defined for all x except at x = 3. x - 3 As x approaches 3 from left hand side of the number line, f(x) increases and becomes close to 6 -x 3 lim f(x) = 6i.e. ¡ú
  • 25. Limit of a Function (Cont.) Similarly, as x approaches 3 from right hand side of the number line, f(x) decreases and becomes close to 6 +x 3 i.e. lim f(x) = 6 ¡ú
  • 26. x takes the values 2.91 2.95 2.9991 .. 2.9999 ¡­¡­. 9221 etc. x 3¡Ù Left Hand Limit x 3 Y O X -x 3 lim ¡ú
  • 27. x takes the values 3.1 3.002 3.000005 ¡­¡­.. 3.00000000000257 etc. x 3¡Ù Right Hand Limit 3 X Y O x +x 3 lim ¡ú
  • 28. Existence Theorem on Limits ( ) ( ) ( )- +x a x a x a lim ? x exists iff lim ? x and lim ? x exist and are equal. ¡ú ¡ú ¡ú ( ) ( ) ( )- +x a x a x a lim ? x exists lim ? x = lim ? xi.e. ¡ú ¡ú ¡ú ?
  • 29. Example ¨C 7 Which of the following limits exist: ( ) x 0 x i lim x¡ú [ ]5 x 2 (ii) lim x ¡ú ( ) ( ) x Solution : i Let f x = x ( ) ( ) ( )- h 0 h 0 h 0x 0 0 - h -h LHL at x = 0 = lim f x = limf 0 - h =lim =lim = -1 0 - h h¡ú ¡ú ¡ú¡ú ( ) ( ) ( )+ h 0 h 0 h 0x 0 0 + h h RHL at x = 0 = lim f x = limf 0 + h =lim =lim = 1 0 + h h¡ú ¡ú ¡ú¡ú ( ) ( )- + x 0 x 0 lim f x lim f x ¡ú ¡ú ¡ÙQ x 0 x lim does not exist. x¡ú ¡à
  • 30. Example - 7 (ii) ( ) [ ]Solution:(ii) Let f x = x ( ) h 0 h 05 x 2 5 5 5 LHL at x = = lim f x =limf -h =lim -h =2 2 2 2? ¡ú ¡ú ¡ú ? ? ? ? ? ? ? ¡Â ? ¡Â ? ?? ? ? ? ? ? ( ) h 0 h 05 x 2 5 5 5 RHL at x = = lim f x =limf +h =lim +h =2 2 2 2+ ¡ú ¡ú ¡ú ? ? ? ? ? ? ? ¡Â ? ¡Â ? ?? ? ? ? ? ? ( ) ( )5 5 x x 2 2 lim f x lim f x? + ¡ú ¡ú =Q [ ]5 x 2 lim x exists. ¡ú ¡à
  • 31. Properties of Limits ( ) x a x a x a i lim [f(x) g(x)]= lim f(x) lim g(x) = m n ¡ú ¡ú ¡ú ¡À ¡À ¡À ( ) x a x a ii lim [cf(x)]= c. lim f(x) = c.m ¡ú ¡ú ( ) ( ) x a x a x a iii lim f(x). g(x) = lim f(x) . lim g(x) = m.n ¡ú ¡ú ¡ú ( ) x a x a x a lim f(x) f(x) m iv lim = = , provided n 0 g(x) lim g(x) n ¡ú ¡ú ¡ú ¡Ù If and where ¡®m¡¯ and ¡®n¡¯ are real and finite then x a lim g(x)= n ¡úx a lim f(x)= m ¡ú
  • 32. The limit can be found directly by substituting the value of x. Algebraic Limits (Substitution Method) ( )2 x 2 For example : lim 2x +3x + 4 ¡ú ( ) ( )2 = 2 2 +3 2 + 4 = 8+6+ 4 =18 2 2 x 2 x +6 2 +6 10 5 lim = = = x+2 2+2 4 2¡ú
  • 33. Algebraic Limits (Factorization Method) When we substitute the value of x in the rational expression it takes the form 0 . 0 2 2x 3 x -3x+2x-6 =lim x (x-3)+1(x-3)¡ú 2x 3 (x-3)(x+2) =lim (x +1)(x-3)¡ú 2 2x 3 x-2 3-2 1 =lim = = 10x +1 3 +1¡ú 2 3 2x 3 x -x-6 0 For example: lim form 0x -3x +x-3¡ú ? ? ? ?? ?
  • 34. Algebraic Limits (Rationalization Method) When we substitute the value of x in the rational expression it takes the form 0 , etc. 0 ¡Þ ¡Þ [ ] 2 2 2 2x 4 x -16 ( x +9 +5) =lim ¡Á Rationalizing the denominator ( x +9 -5) ( x +9 +5)¡ú 2 2 2x 4 x -16 =lim ¡Á( x +9 +5) (x +9-25)¡ú 2 2 2x 4 x -16 =lim ¡Á( x +9 +5) x -16¡ú 2 2 x 4 =lim( x +9 +5) = 4 +9 +5 = 5+5=10 ¡ú 2 2x 4 x -16 0 For example: lim form 0x +9 -5¡ú ? ? ? ?? ?
  • 35. Standard Result n n n-1 x a x - a lim = n a x - a¡ú If n is any rational number, then 0 form 0 ? ? ? ? ? ?
  • 36. 3 2 x 5 x -125 Evaluate: lim x -7x+10¡ú ( ) 333 2 2x 5 x 5 x - 5x -125 Solution: lim =lim x -7x+10 x -5x-2x-10¡ú ¡ú Example ¨C 8 (i) 2 x 5 (x-5)(x +5x+25) =lim (x-2)(x-5)¡ú 2 x 5 (x +5x+25) =lim x-2¡ú 2 5 +5¡Á5+25 25+25+25 = = =25 5-2 3
  • 37. 2 x 3 1 1 Evaluate: lim (x -9) + x+3 x-3¡ú ? ? ? ?? ? 2 x 3 1 1 Solution: lim (x -9) + x+3 x-3¡ú ? ? ? ?? ? x 3 x-3+x+3 =lim(x+3)(x-3) (x+3)(x-3)¡ú ? ? ? ? ? ? Example ¨C 8 (ii) =2¡Á3=6 x 3 =lim 2x ¡ú
  • 38. x a a+2x - 3x Evaluate:lim 3a+x -2 x¡ú x a a+2x - 3x Solution: lim 3a+x -2 x¡ú [ ]x a a+2x - 3x 3a+x +2 x =lim ¡Á Rationalizing the denominator 3a+x -2 x 3a+x +2 x¡ú Example ¨C 8 (iii) x a a+2x - 3x =lim ¡Á 3a+x +2 x 3a+x- 4x¡ú [ ]x a 3a+x +2 x a+2x + 3x =lim ¡Á a+2x - 3x¡Á Rationalizing thenumerator 3(a- x) a+2x + 3x¡ú
  • 39. x a 3a+x +2 x a+2x-3x =lim ¡Á 3(a- x)a+2x + 3x¡ú Solution Cont. x a 3a+x +2 x a- x =lim ¡Á 3(a- x)a+2x + 3x¡ú x a 3a+x +2 x 1 =lim ¡Á 3a+2x + 3x¡ú 3a+a+2 a 1 2 a+2 a 1 = ¡Á = ¡Á 3 3a+2a+ 3a 3a+ 3a 4 a 1 2 = ¡Á = 32 3a 3 3
  • 40. 2x 1 3+x - 5- x Evaluate: lim x -1¡ú 2x 1 3+x - 5- x Solution: lim x -1¡ú [ ]2x 1 3+x - 5- x 3+x + 5- x =lim ¡Á Rationalizing the numerator x -1 3+x + 5- x¡ú Example ¨C 8 (iv) 2x 1 3+x-5+x 1 =lim ¡Á x -1 3+x + 5-x¡ú x 1 2(x-1) 1 =lim ¡Á (x-1)(x+1) 3+x + 5- x¡ú ( ) ( )x 1 2 =lim x+1 3+x + 5- x¡ú 2 1 = = 42( 4 + 4) ( ) ( ) 2 = 1+1 3+1+ 5-1
  • 41. 5 5 x a x -a If lim = 405, find all possible values of a. x-a¡ú 5 5 x a x -a Solution: We have lim = 405 x-a¡ú Example ¨C 8 (v) n n 5-1 n-1 x a x -a 5 a = 405 lim = na x-a¡ú ? ? ? ? ¡Â ? ? Q 4 a =81? a=¡À 3?