là hệ trực chuẩn của Vnk. Chứng minh: (Þ): Vì P ^ Q và P, Q là các không gian con của Vnk nên P Ç Q = . Do đó, nếu ta lấy lần lượt trong P và Q các cơ sở trực chuẩn và thì hệ sẽ là hệ trực chuẩn trong Vnk. (Ü): Nếu trong Vnk có một hệ trực chuẩn sao cho , lần lượt là cơ sở trực chuẩn của P và Q thì với Î P, Î Q, ta có: , Vậy . Do đó P ^ Q. 1.4. PHÉP BIẾN ĐỔI TUYẾN TÍNH LIÊN HỢP Dạng song tuyến tính Định nghĩa Cho không gian