ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Math 22: Integral Calculus INTEGRATION: The Antiderivative Recall: Basic theorems of finding the derivative  f(x) =k  ?  f¡¯(x) = 0. f(x) = x n   ? f¡¯(x) = nx n-1 f(x) = kg(x)  ? f¡¯(x) = kg¡¯(x) f(x) = g(x) + h(x)  ?  f¡¯(x)=g¡¯(x) + h¡¯(x) f(x) = g(x)h(x)  ?  f¡¯(x) = g(x)h¡¯(x)+g¡¯(x)h(x) f(x) = g(x)/h(x)  ?  (h(x)g¡¯(x)-g(x)h¡¯(x))/[h(x)] 2
Math 22: Integral Calculus INTEGRATION: The Antiderivative Illustrations: Find the derivative  f(x) = 2x +1  h(x) = x 3 +4x 2  -3 g(x) = (x-3)(x 2 +1) f(x) = (3x-1)/(x 3 -2) g(x) = (x 3 +4x 2  -3)(2x +1)
Math 22: Integral Calculus INTEGRATION: The Antiderivative A function F is called an  antiderivative  of the function f on an interval I if F¡¯(x)=f(x) for all values of x in I. Consequently, we write ? f(x)dx = F(x)+C F(x) + C is the general antiderivative and C is the constant of integration.
Math 22: Integral Calculus INTEGRATION: The Antiderivative Basic theorems of integration: ?   dx =  x  + C ?   x n  dx =  + C ? af(x)dx = a  ?  f(x) dx ?   [f(x) + g(x)]dx =  ?  f(x)dx  +   ?  g(x)dx
Math 22: Integral Calculus INTEGRATION: The Antiderivative Illustrations: Find the    antiderivative  ?   x 2  dx  ?   (x -2  +x 3 ) dx ?   (4x-1)(2x+3) dx ?   ? x(x-5)   dx ?   dx
Math 22: Integral Calculus INTEGRATION: The Antiderivative Exercises: Find the antiderivative  ?   x 3  +5x -2 dx  ?   (3x 2 -5x+4) dx ?   (4x+1)(2x-1) dx ?   ? x(x 2 -3x)   dx ?   dx

More Related Content

Math22 Lecture1

  • 1. Math 22: Integral Calculus INTEGRATION: The Antiderivative Recall: Basic theorems of finding the derivative f(x) =k ? f¡¯(x) = 0. f(x) = x n ? f¡¯(x) = nx n-1 f(x) = kg(x) ? f¡¯(x) = kg¡¯(x) f(x) = g(x) + h(x) ? f¡¯(x)=g¡¯(x) + h¡¯(x) f(x) = g(x)h(x) ? f¡¯(x) = g(x)h¡¯(x)+g¡¯(x)h(x) f(x) = g(x)/h(x) ? (h(x)g¡¯(x)-g(x)h¡¯(x))/[h(x)] 2
  • 2. Math 22: Integral Calculus INTEGRATION: The Antiderivative Illustrations: Find the derivative f(x) = 2x +1 h(x) = x 3 +4x 2 -3 g(x) = (x-3)(x 2 +1) f(x) = (3x-1)/(x 3 -2) g(x) = (x 3 +4x 2 -3)(2x +1)
  • 3. Math 22: Integral Calculus INTEGRATION: The Antiderivative A function F is called an antiderivative of the function f on an interval I if F¡¯(x)=f(x) for all values of x in I. Consequently, we write ? f(x)dx = F(x)+C F(x) + C is the general antiderivative and C is the constant of integration.
  • 4. Math 22: Integral Calculus INTEGRATION: The Antiderivative Basic theorems of integration: ? dx = x + C ? x n dx = + C ? af(x)dx = a ? f(x) dx ? [f(x) + g(x)]dx = ? f(x)dx + ? g(x)dx
  • 5. Math 22: Integral Calculus INTEGRATION: The Antiderivative Illustrations: Find the antiderivative ? x 2 dx ? (x -2 +x 3 ) dx ? (4x-1)(2x+3) dx ? ? x(x-5) dx ? dx
  • 6. Math 22: Integral Calculus INTEGRATION: The Antiderivative Exercises: Find the antiderivative ? x 3 +5x -2 dx ? (3x 2 -5x+4) dx ? (4x+1)(2x-1) dx ? ? x(x 2 -3x) dx ? dx