際際滷

際際滷Share a Scribd company logo
Machine Learning
Logistic Regression
Generalized Linear Model
8.1 Introduction, overview
8.2 Model specification
8.3 Model fitting
8.3.1 MLE
8.3.2 Steepest descent
8.3.3 Newton's method
8.3.6 l2 regularization
8.3.7 Multi-class logistic regression
8.4 Bayesian logistic regression
8.4.1 Laplace approximation
8.4.2 Derivation of the BIC(Bayesian Information
Criterion)
8.4.3 Gaussian approximation for logistic regression
8.4.4 Approximating the posterior predictive
8.5 Online learning and stochastic optimization
8.5.3 The LMS algorithm
8.5.4 The perceptron algorithm
8.5.5 A Bayesian view
8.6 Generative vs discriminative classifiers
8.6.1 Pros and cons of each approach
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
るジ 豕 蠍磯(蟆曙 螳, 危,) 伎 豕
豸′-れ豺
Murpy's Machine Learning 9. Generalize Linear Model
 伎 覩碁
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Recall Ridge regresion
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
蠏覿殊 蠏碁 蠏願 蠏
MAP豢豺 朱襦 l2 reg 螳讌
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
覯伎 linear regression
Murpy's Machine Learning 9. Generalize Linear Model
9.1 Introduction
9.2 The exponential family
9.2.1 Definition
9.2.2.1 Bernoulli
9.2.2.2 Multinoulli
9.2.2.3 Univariate Gaussian
9.2.3 Log partition function
9.2.3.1 Example: the Bernoulli distribution
9.3 Generalized linear models (GLMs)
9.3.1 Basics
9.3.2 ML and MAP estimation
9.3.3 Bayesian inference
Murpy's Machine Learning 9. Generalize Linear Model
Normalize  term
企 覿襯 讌 螳 覈朱 
 朱 讌譟煙企手 .
譟
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Likelihood 豢覿糾
豌 覃伎/豌
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
Murpy's Machine Learning 9. Generalize Linear Model
logistic regression  蟆曙 亮
= 1/(1+exp(-w'x)) 企襦 S 轟 8.3.1
 蟆郁骸 螳讌.
Logistic R gradient
覿瑚 覦蟇  蟆郁骸 NLL 伎 蟇磯

More Related Content

What's hot (20)

襾誤's 襾語: Latent Linear Model
襾誤's 襾語: Latent Linear Model襾誤's 襾語: Latent Linear Model
襾誤's 襾語: Latent Linear Model
Jungkyu Lee
Murpy's Machine Learing: 10. Directed Graphical Model
Murpy's Machine Learing: 10. Directed Graphical ModelMurpy's Machine Learing: 10. Directed Graphical Model
Murpy's Machine Learing: 10. Directed Graphical Model
Jungkyu Lee
-覓朱Μろ 覈碁
-覓朱Μろ 覈碁-覓朱Μろ 覈碁
-覓朱Μろ 覈碁
jdo
襾誤殊 襾語: Undirencted Graphical Model
襾誤殊 襾語: Undirencted Graphical Model襾誤殊 襾語: Undirencted Graphical Model
襾誤殊 襾語: Undirencted Graphical Model
Jungkyu Lee
Efficient linear skyline algorithm in two dimensional space
Efficient linear skyline algorithm in two dimensional spaceEfficient linear skyline algorithm in two dimensional space
Efficient linear skyline algorithm in two dimensional space
Lecture 3: Unsupervised Learning
Lecture 3: Unsupervised LearningLecture 3: Unsupervised Learning
Lecture 3: Unsupervised Learning
Sang Jun Lee
2012 Dm A0 02 Pdf
2012 Dm A0 02 Pdf2012 Dm A0 02 Pdf
2012 Dm A0 02 Pdf
kd19h
Lecture 4: Neural Networks I
Lecture 4: Neural Networks ILecture 4: Neural Networks I
Lecture 4: Neural Networks I
Sang Jun Lee
Gaussian Mixture Model
Gaussian Mixture ModelGaussian Mixture Model
Gaussian Mixture Model
KyeongUkJang
Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)
螳覩手記 螳覩手記
[170517 5譯殊姶]C語 A覦
[170517 5譯殊姶]C語 A覦[170517 5譯殊姶]C語 A覦
[170517 5譯殊姶]C語 A覦
arundine
豕 ク讌 蟇磯Μ 襦蠏碁覦
豕 ク讌 蟇磯Μ  襦蠏碁覦豕 ク讌 蟇磯Μ  襦蠏碁覦
豕 ク讌 蟇磯Μ 襦蠏碁覦
EunGi Hong
檎稼稼螳襴
檎稼稼螳襴檎稼稼螳襴
檎稼稼螳襴
譬 豕
DP 螻襴讀 覲伎.pdf
DP 螻襴讀  覲伎.pdfDP 螻襴讀  覲伎.pdf
DP 螻襴讀 覲伎.pdf
Ho Jeong Im
螻糾一危磯伎(Spatial db)
螻糾一危磯伎(Spatial db)螻糾一危磯伎(Spatial db)
螻糾一危磯伎(Spatial db)
H.J. SIM
Recurrent Neural Net 企螻 る
Recurrent Neural Net 企螻 るRecurrent Neural Net 企螻 る
Recurrent Neural Net 企螻 る
覦 蟾
堝朱-蠏覿覲仰
堝朱-蠏覿覲仰堝朱-蠏覿覲仰
堝朱-蠏覿覲仰
jdo
Energy based models and boltzmann machines - v2.0
Energy based models and boltzmann machines - v2.0Energy based models and boltzmann machines - v2.0
Energy based models and boltzmann machines - v2.0
Soowan Lee
Chapter 19 Variational Inference
Chapter 19 Variational InferenceChapter 19 Variational Inference
Chapter 19 Variational Inference
KyeongUkJang
襾誤's 襾語: Latent Linear Model
襾誤's 襾語: Latent Linear Model襾誤's 襾語: Latent Linear Model
襾誤's 襾語: Latent Linear Model
Jungkyu Lee
Murpy's Machine Learing: 10. Directed Graphical Model
Murpy's Machine Learing: 10. Directed Graphical ModelMurpy's Machine Learing: 10. Directed Graphical Model
Murpy's Machine Learing: 10. Directed Graphical Model
Jungkyu Lee
-覓朱Μろ 覈碁
-覓朱Μろ 覈碁-覓朱Μろ 覈碁
-覓朱Μろ 覈碁
jdo
襾誤殊 襾語: Undirencted Graphical Model
襾誤殊 襾語: Undirencted Graphical Model襾誤殊 襾語: Undirencted Graphical Model
襾誤殊 襾語: Undirencted Graphical Model
Jungkyu Lee
Efficient linear skyline algorithm in two dimensional space
Efficient linear skyline algorithm in two dimensional spaceEfficient linear skyline algorithm in two dimensional space
Efficient linear skyline algorithm in two dimensional space
Lecture 3: Unsupervised Learning
Lecture 3: Unsupervised LearningLecture 3: Unsupervised Learning
Lecture 3: Unsupervised Learning
Sang Jun Lee
2012 Dm A0 02 Pdf
2012 Dm A0 02 Pdf2012 Dm A0 02 Pdf
2012 Dm A0 02 Pdf
kd19h
Lecture 4: Neural Networks I
Lecture 4: Neural Networks ILecture 4: Neural Networks I
Lecture 4: Neural Networks I
Sang Jun Lee
Gaussian Mixture Model
Gaussian Mixture ModelGaussian Mixture Model
Gaussian Mixture Model
KyeongUkJang
[170517 5譯殊姶]C語 A覦
[170517 5譯殊姶]C語 A覦[170517 5譯殊姶]C語 A覦
[170517 5譯殊姶]C語 A覦
arundine
豕 ク讌 蟇磯Μ 襦蠏碁覦
豕 ク讌 蟇磯Μ  襦蠏碁覦豕 ク讌 蟇磯Μ  襦蠏碁覦
豕 ク讌 蟇磯Μ 襦蠏碁覦
EunGi Hong
檎稼稼螳襴
檎稼稼螳襴檎稼稼螳襴
檎稼稼螳襴
譬 豕
DP 螻襴讀 覲伎.pdf
DP 螻襴讀  覲伎.pdfDP 螻襴讀  覲伎.pdf
DP 螻襴讀 覲伎.pdf
Ho Jeong Im
螻糾一危磯伎(Spatial db)
螻糾一危磯伎(Spatial db)螻糾一危磯伎(Spatial db)
螻糾一危磯伎(Spatial db)
H.J. SIM
Recurrent Neural Net 企螻 る
Recurrent Neural Net 企螻 るRecurrent Neural Net 企螻 る
Recurrent Neural Net 企螻 る
覦 蟾
堝朱-蠏覿覲仰
堝朱-蠏覿覲仰堝朱-蠏覿覲仰
堝朱-蠏覿覲仰
jdo
Energy based models and boltzmann machines - v2.0
Energy based models and boltzmann machines - v2.0Energy based models and boltzmann machines - v2.0
Energy based models and boltzmann machines - v2.0
Soowan Lee
Chapter 19 Variational Inference
Chapter 19 Variational InferenceChapter 19 Variational Inference
Chapter 19 Variational Inference
KyeongUkJang

Viewers also liked (12)

Jensen's inequality, EM 螻襴讀
Jensen's inequality, EM 螻襴讀 Jensen's inequality, EM 螻襴讀
Jensen's inequality, EM 螻襴讀
Jungkyu Lee
ThinkBayes: Chapter 9 two_dimensions
ThinkBayes: Chapter 9 two_dimensionsThinkBayes: Chapter 9 two_dimensions
ThinkBayes: Chapter 9 two_dimensions
Jungkyu Lee
企 讌 3 襭 螻給
企 讌 3 襭 螻給企 讌 3 襭 螻給
企 讌 3 襭 螻給
Jungkyu Lee
Murpy's Machine Learning:14. Kernel
Murpy's Machine Learning:14. KernelMurpy's Machine Learning:14. Kernel
Murpy's Machine Learning:14. Kernel
Jungkyu Lee
ThinkBayes: chapter油13油油simulation
ThinkBayes: chapter油13油油simulationThinkBayes: chapter油13油油simulation
ThinkBayes: chapter油13油油simulation
Jungkyu Lee
TETRIS AI WITH REINFORCEMENT LEARNING
TETRIS AI WITH REINFORCEMENT LEARNINGTETRIS AI WITH REINFORCEMENT LEARNING
TETRIS AI WITH REINFORCEMENT LEARNING
Jungkyu Lee
襾誤殊 襾語 13 Sparse Linear Model
襾誤殊 襾語 13 Sparse Linear Model襾誤殊 襾語 13 Sparse Linear Model
襾誤殊 襾語 13 Sparse Linear Model
Jungkyu Lee
4. Gaussian Model
4. Gaussian Model4. Gaussian Model
4. Gaussian Model
Jungkyu Lee
觚 蠍磯 豢豌ろ 螳覦
觚  蠍磯 豢豌ろ 螳覦觚  蠍磯 豢豌ろ 螳覦
觚 蠍磯 豢豌ろ 螳覦
Jungkyu Lee
襾誤殊 襾語: 17 Markov Chain and HMM
襾誤殊 襾語: 17  Markov Chain and HMM襾誤殊 襾語: 17  Markov Chain and HMM
襾誤殊 襾語: 17 Markov Chain and HMM
Jungkyu Lee
From A Neural Probalistic Language Model to Word2vec
From A Neural Probalistic Language Model to Word2vecFrom A Neural Probalistic Language Model to Word2vec
From A Neural Probalistic Language Model to Word2vec
Jungkyu Lee
1. boolean 蟆
1. boolean 蟆1. boolean 蟆
1. boolean 蟆
Jungkyu Lee
Jensen's inequality, EM 螻襴讀
Jensen's inequality, EM 螻襴讀 Jensen's inequality, EM 螻襴讀
Jensen's inequality, EM 螻襴讀
Jungkyu Lee
ThinkBayes: Chapter 9 two_dimensions
ThinkBayes: Chapter 9 two_dimensionsThinkBayes: Chapter 9 two_dimensions
ThinkBayes: Chapter 9 two_dimensions
Jungkyu Lee
企 讌 3 襭 螻給
企 讌 3 襭 螻給企 讌 3 襭 螻給
企 讌 3 襭 螻給
Jungkyu Lee
Murpy's Machine Learning:14. Kernel
Murpy's Machine Learning:14. KernelMurpy's Machine Learning:14. Kernel
Murpy's Machine Learning:14. Kernel
Jungkyu Lee
ThinkBayes: chapter油13油油simulation
ThinkBayes: chapter油13油油simulationThinkBayes: chapter油13油油simulation
ThinkBayes: chapter油13油油simulation
Jungkyu Lee
TETRIS AI WITH REINFORCEMENT LEARNING
TETRIS AI WITH REINFORCEMENT LEARNINGTETRIS AI WITH REINFORCEMENT LEARNING
TETRIS AI WITH REINFORCEMENT LEARNING
Jungkyu Lee
襾誤殊 襾語 13 Sparse Linear Model
襾誤殊 襾語 13 Sparse Linear Model襾誤殊 襾語 13 Sparse Linear Model
襾誤殊 襾語 13 Sparse Linear Model
Jungkyu Lee
4. Gaussian Model
4. Gaussian Model4. Gaussian Model
4. Gaussian Model
Jungkyu Lee
觚 蠍磯 豢豌ろ 螳覦
觚  蠍磯 豢豌ろ 螳覦觚  蠍磯 豢豌ろ 螳覦
觚 蠍磯 豢豌ろ 螳覦
Jungkyu Lee
襾誤殊 襾語: 17 Markov Chain and HMM
襾誤殊 襾語: 17  Markov Chain and HMM襾誤殊 襾語: 17  Markov Chain and HMM
襾誤殊 襾語: 17 Markov Chain and HMM
Jungkyu Lee
From A Neural Probalistic Language Model to Word2vec
From A Neural Probalistic Language Model to Word2vecFrom A Neural Probalistic Language Model to Word2vec
From A Neural Probalistic Language Model to Word2vec
Jungkyu Lee
1. boolean 蟆
1. boolean 蟆1. boolean 蟆
1. boolean 蟆
Jungkyu Lee

Murpy's Machine Learning 9. Generalize Linear Model