狠狠撸

狠狠撸Share a Scribd company logo
X - F + 2P
S
@ejlbell
1 +
Convolution
1
1
0
0
1
0
1
1
1
0
0
0
1
0
0
1
0
0
0
0
1
1
1
1
1
4
Image
Convoluted
Feature
Image Filters
-1
-2
-1
0
0
0
+1
+2
+1
-1
0
+1
-2
0
+2
-1
0
+1
X
X
X - F + 2P
S
X = image size
1 +
X
X
F
X = image size
F = ?lter size
X - F + 2P
S
1 +
X
XX = image size
F = ?lter size
P = padding
F
P
X - F + 2P
S
1 +
X
XX = image size
F = ?lter size
P = padding
S = stride
P
X - F + 2P
S
1 +
X
XX = image size
F = ?lter size
P = padding
S = stride
P
X - F + 2P
S
1 +
X
XX = image size
F = ?lter size
P = padding
S = stride
P
X - F + 2P
S
1 +
X
XX = image size
F = ?lter size
P = padding
S = stride
P
X - F + 2P
S
1 +
X
XX = image size
F = ?lter size
P = padding
S = stride
P
X - F + 2P
S
1 +
X
XX = image size
F = ?lter size
P = padding
S = stride
P
X - F + 2P
S
1 +
X
XX = image size
F = ?lter size
P = padding
S = stride
P
X - F + 2P
S
1 +
Filter Size
1 × 1 3 × 3 7 × 7 9 × 95 × 5
Max Pooling
1
6
2
2
4
1
0
4
1
5
3
1
2
1
1
3
8
4
6
3
X
Y
Example: VGG
19 layers
3x3 convolution
pad 1
stride 1
19 layers
3x3 convolution
pad 1
stride 1
X - F + 2P
S
1 + = X
Example: VGG
Resources
? image size
? parameters (dense vs conv)
? parallelisation (data vs model)
thanks
@ejlbell
References

More Related Content

PyData London CNN Lightning Talk