ݺߣ

ݺߣShare a Scribd company logo
A Study on QUALITY OF WORK LIFE OF EMPLOYEES At
STEEL AUTHORITY OF INDIA LIMTED,
SALEM STEEL PLANT [SSP] USING SAS
By
Monica GS
Importing two different data and merging
Proc import datafile="E:trim 5James Sir -
SAPSailQWL1.xls"
out=work.QWL1;
run;
Proc import datafile="E:trim 5James Sir -
SAPSailQWL2.xls"
out=work.QWL2;
run;
Proc sql;
create table work.model as
select *
from work.QWL1, work.QWL2
where QWL1.CATEGORY=QWL2.CATEGORY
order by QWL1.SLNO;
quit;
File 1
File 2
The FREQ Procedure
CATEGORY
CATEGORY Frequency Percent
Cumulative
Frequency
Cumulative
Percent
1 28 35.44 28 35.44
2 51 64.56 79 100.00
proc freq data = work.model;
tables CATEGORY;
run;
frequency
proc means data =work.model;
var WELFARE INDUSTRIALRELATIONSHIP EMPLOYEECOMPENSATION
EMPLOYEEMOTIVATION CAREERDEVELOPMENT HRP SAFETY;
run;
he MEANS Procedure
Variable Label N Mean Std Dev Minimum Maximum
WELFARE
INDUSTRIA
LRELATION
SHIP
EMPLOYEE
COMPENSA
TION
EMPLOYEE
MOTIVATIO
N
CAREERDE
VELOPMEN
T
HRP
SAFETY
WELFARE
INDUSTRIA
LRELATION
SHIP
EMPLOYEE
COMPENSA
TION
EMPLOYEE
MOTIVATIO
N
CAREERDE
VELOPMEN
T
HRP
SAFETY
79
79
79
79
79
79
79
3.9240506
3.4683544
3.6708861
3.4810127
3.8481013
3.7468354
4.0506329
0.6154455
0.7980014
0.6349141
0.7313626
0.7176995
0.6692582
0.7662552
3.0000000
2.0000000
2.0000000
2.0000000
3.0000000
2.0000000
3.0000000
5.0000000
5.0000000
5.0000000
5.0000000
5.0000000
5.0000000
5.0000000
DESCRIPTIVE STATISTICS
proc freq data =work.model;
tables WELFARE * CATEGORY/chisq;
run;
proc freq data =work.model;
tables INDUSTRIALRELATIONSHIP * CATEGORY/chisq;
run;
proc freq data =work.model;
tables EMPLOYEECOMPENSATION * CATEGORY/chisq;
run;
proc freq data =work.model;
tables EMPLOYEEMOTIVATION * CATEGORY/chisq;
run;
proc freq data =work.model;
tables CAREERDEVELOPMENT * CATEGORY/chisq;
run;
proc freq data =work.model;
tables HRP * CATEGORY/chisq;
run;
proc freq data =work.model;
tables SAFETY * CATEGORY/chisq;
run;
Chisq
Table of CAREERDEVELOPMENT by CATEGORY
CAREERDEVEL
OPMENT(CAR
EERDEVELOP
MENT)
CATEGORY(CATEGORY)
Total
1 2
3 12
15.19
44.44
42.86
15
18.99
55.56
29.41
27
34.18
?
?
4 10
12.66
27.03
35.71
27
34.18
72.97
52.94
37
46.84
?
?
5 6
7.59
40.00
21.43
9
11.39
60.00
17.65
15
18.99
?
?
Total 28
35.44
51
64.56
79
100.00
Statistic DF Value Prob
Chi-Square 2 2.2376 0.3267
Likelihood
Ratio Chi-
Square
2 2.2558 0.3237
Mantel-
Haenszel Chi-
Square
1 0.3277 0.5670
Phi Coefficient ? 0.1683 ?
Contingency
Coefficient
? 0.1660 ?
Cramer's V ? 0.1683
proc corr data =work.model;
var WELFARE INDUSTRIALRELATIONSHIP
EMPLOYEECOMPENSATION EMPLOYEEMOTIVATION
CAREERDEVELOPMENT HRP SAFETY;
run;
proc reg data =work.model;
model CATEGORY = WELFARE INDUSTRIALRELATIONSHIP
EMPLOYEECOMPENSATION EMPLOYEEMOTIVATION
CAREERDEVELOPMENT HRP SAFETY;
run;
proc anova data =work.model;
class CATEGORY;
model WELFARE INDUSTRIALRELATIONSHIP
EMPLOYEECOMPENSATION EMPLOYEEMOTIVATION
CAREERDEVELOPMENT HRP SAFETY = CATEGORY;
run;
Correlation/regression/anova
Correlation Output
Pearson Correlation Coefficients, N = 79
Prob > |r| under H0: Rho=0
WELFARE
INDUSTRIALRELATION
SHIP
EMPLOYEECOMPENSAT
ION EMPLOYEEMOTIVATION CAREERDEVELOPMENT HRP SAFETY
WELFARE
WELFARE
1.00000
?
0.54323
<.0001
0.29612
0.0081
0.45248
<.0001
0.32185
0.0038
0.54411
<.0001
0.41605
0.0001
INDUSTRIALRELATION
SHIP
INDUSTRIALRELATION
SHIP
0.54323
<.0001
1.00000
?
0.56117
<.0001
0.64149
<.0001
0.43920
<.0001
0.58494
<.0001
0.38005
0.0006
EMPLOYEECOMPENSAT
ION
EMPLOYEECOMPENSAT
ION
0.29612
0.0081
0.56117
<.0001
1.00000
?
0.53856
<.0001
0.50786
<.0001
0.37466
0.0007
0.45633
<.0001
EMPLOYEEMOTIVATIO
N
EMPLOYEEMOTIVATIO
N
0.45248
<.0001
0.64149
<.0001
0.53856
<.0001
1.00000
?
0.67833
<.0001
0.64487
<.0001
0.57366
<.0001
CAREERDEVELOPMENT
CAREERDEVELOPMENT
0.32185
0.0038
0.43920
<.0001
0.50786
<.0001
0.67833
<.0001
1.00000
?
0.66627
<.0001
0.64360
<.0001
HRP
HRP
0.54411
<.0001
0.58494
<.0001
0.37466
0.0007
0.64487
<.0001
0.66627
<.0001
1.00000
?
0.60031
<.0001
SAFETY
SAFETY
0.41605
0.0001
0.38005
0.0006
0.45633
<.0001
Regression Output
ANOVA Output
Source DF
Sum of
Squares
Mean
Square F Value Pr > F
Model 1
1.504662
62
1.504662
62
3.87 0.0528
Error 77
29.93837
535
0.388810
07
? ?
Correcte
d Total
78
31.44303
797
? ? ?
R-Square Coeff Var Root MSE
EMPLOYEECO
MPENSATION
Mean
0.047854 16.98626 0.623546 3.670886
Source DF Anova SS
Mean
Square F Value Pr > F
CATEGOR
Y
1
1.504662
62
1.504662
62
3.87 0.0528
Webpage and PDF Coding
ods pdf file= 'E:trim 5James Sir - SAPSailSas assignment.pdf';
startpage = 1;
ods pdf text = "SAS ASSIGNMENT-13MBA1042";
ods pdf close;
run;
quit;
ods html file= 'E:trim 5James Sir - SAPSailSas assignment.html';
:::::::::
:::::::::
:::::::::
ods html close;
run;
quit;
Thank you

More Related Content

SAS coding for analysis-Using SAIL company's (HR) data

  • 1. A Study on QUALITY OF WORK LIFE OF EMPLOYEES At STEEL AUTHORITY OF INDIA LIMTED, SALEM STEEL PLANT [SSP] USING SAS By Monica GS
  • 2. Importing two different data and merging Proc import datafile="E:trim 5James Sir - SAPSailQWL1.xls" out=work.QWL1; run; Proc import datafile="E:trim 5James Sir - SAPSailQWL2.xls" out=work.QWL2; run; Proc sql; create table work.model as select * from work.QWL1, work.QWL2 where QWL1.CATEGORY=QWL2.CATEGORY order by QWL1.SLNO; quit;
  • 5. The FREQ Procedure CATEGORY CATEGORY Frequency Percent Cumulative Frequency Cumulative Percent 1 28 35.44 28 35.44 2 51 64.56 79 100.00 proc freq data = work.model; tables CATEGORY; run; frequency
  • 6. proc means data =work.model; var WELFARE INDUSTRIALRELATIONSHIP EMPLOYEECOMPENSATION EMPLOYEEMOTIVATION CAREERDEVELOPMENT HRP SAFETY; run; he MEANS Procedure Variable Label N Mean Std Dev Minimum Maximum WELFARE INDUSTRIA LRELATION SHIP EMPLOYEE COMPENSA TION EMPLOYEE MOTIVATIO N CAREERDE VELOPMEN T HRP SAFETY WELFARE INDUSTRIA LRELATION SHIP EMPLOYEE COMPENSA TION EMPLOYEE MOTIVATIO N CAREERDE VELOPMEN T HRP SAFETY 79 79 79 79 79 79 79 3.9240506 3.4683544 3.6708861 3.4810127 3.8481013 3.7468354 4.0506329 0.6154455 0.7980014 0.6349141 0.7313626 0.7176995 0.6692582 0.7662552 3.0000000 2.0000000 2.0000000 2.0000000 3.0000000 2.0000000 3.0000000 5.0000000 5.0000000 5.0000000 5.0000000 5.0000000 5.0000000 5.0000000 DESCRIPTIVE STATISTICS
  • 7. proc freq data =work.model; tables WELFARE * CATEGORY/chisq; run; proc freq data =work.model; tables INDUSTRIALRELATIONSHIP * CATEGORY/chisq; run; proc freq data =work.model; tables EMPLOYEECOMPENSATION * CATEGORY/chisq; run; proc freq data =work.model; tables EMPLOYEEMOTIVATION * CATEGORY/chisq; run; proc freq data =work.model; tables CAREERDEVELOPMENT * CATEGORY/chisq; run; proc freq data =work.model; tables HRP * CATEGORY/chisq; run; proc freq data =work.model; tables SAFETY * CATEGORY/chisq; run; Chisq
  • 8. Table of CAREERDEVELOPMENT by CATEGORY CAREERDEVEL OPMENT(CAR EERDEVELOP MENT) CATEGORY(CATEGORY) Total 1 2 3 12 15.19 44.44 42.86 15 18.99 55.56 29.41 27 34.18 ? ? 4 10 12.66 27.03 35.71 27 34.18 72.97 52.94 37 46.84 ? ? 5 6 7.59 40.00 21.43 9 11.39 60.00 17.65 15 18.99 ? ? Total 28 35.44 51 64.56 79 100.00
  • 9. Statistic DF Value Prob Chi-Square 2 2.2376 0.3267 Likelihood Ratio Chi- Square 2 2.2558 0.3237 Mantel- Haenszel Chi- Square 1 0.3277 0.5670 Phi Coefficient ? 0.1683 ? Contingency Coefficient ? 0.1660 ? Cramer's V ? 0.1683
  • 10. proc corr data =work.model; var WELFARE INDUSTRIALRELATIONSHIP EMPLOYEECOMPENSATION EMPLOYEEMOTIVATION CAREERDEVELOPMENT HRP SAFETY; run; proc reg data =work.model; model CATEGORY = WELFARE INDUSTRIALRELATIONSHIP EMPLOYEECOMPENSATION EMPLOYEEMOTIVATION CAREERDEVELOPMENT HRP SAFETY; run; proc anova data =work.model; class CATEGORY; model WELFARE INDUSTRIALRELATIONSHIP EMPLOYEECOMPENSATION EMPLOYEEMOTIVATION CAREERDEVELOPMENT HRP SAFETY = CATEGORY; run; Correlation/regression/anova
  • 11. Correlation Output Pearson Correlation Coefficients, N = 79 Prob > |r| under H0: Rho=0 WELFARE INDUSTRIALRELATION SHIP EMPLOYEECOMPENSAT ION EMPLOYEEMOTIVATION CAREERDEVELOPMENT HRP SAFETY WELFARE WELFARE 1.00000 ? 0.54323 <.0001 0.29612 0.0081 0.45248 <.0001 0.32185 0.0038 0.54411 <.0001 0.41605 0.0001 INDUSTRIALRELATION SHIP INDUSTRIALRELATION SHIP 0.54323 <.0001 1.00000 ? 0.56117 <.0001 0.64149 <.0001 0.43920 <.0001 0.58494 <.0001 0.38005 0.0006 EMPLOYEECOMPENSAT ION EMPLOYEECOMPENSAT ION 0.29612 0.0081 0.56117 <.0001 1.00000 ? 0.53856 <.0001 0.50786 <.0001 0.37466 0.0007 0.45633 <.0001 EMPLOYEEMOTIVATIO N EMPLOYEEMOTIVATIO N 0.45248 <.0001 0.64149 <.0001 0.53856 <.0001 1.00000 ? 0.67833 <.0001 0.64487 <.0001 0.57366 <.0001 CAREERDEVELOPMENT CAREERDEVELOPMENT 0.32185 0.0038 0.43920 <.0001 0.50786 <.0001 0.67833 <.0001 1.00000 ? 0.66627 <.0001 0.64360 <.0001 HRP HRP 0.54411 <.0001 0.58494 <.0001 0.37466 0.0007 0.64487 <.0001 0.66627 <.0001 1.00000 ? 0.60031 <.0001 SAFETY SAFETY 0.41605 0.0001 0.38005 0.0006 0.45633 <.0001
  • 13. ANOVA Output Source DF Sum of Squares Mean Square F Value Pr > F Model 1 1.504662 62 1.504662 62 3.87 0.0528 Error 77 29.93837 535 0.388810 07 ? ? Correcte d Total 78 31.44303 797 ? ? ? R-Square Coeff Var Root MSE EMPLOYEECO MPENSATION Mean 0.047854 16.98626 0.623546 3.670886 Source DF Anova SS Mean Square F Value Pr > F CATEGOR Y 1 1.504662 62 1.504662 62 3.87 0.0528
  • 14. Webpage and PDF Coding ods pdf file= 'E:trim 5James Sir - SAPSailSas assignment.pdf'; startpage = 1; ods pdf text = "SAS ASSIGNMENT-13MBA1042"; ods pdf close; run; quit; ods html file= 'E:trim 5James Sir - SAPSailSas assignment.html'; ::::::::: ::::::::: ::::::::: ods html close; run; quit;