際際滷

際際滷Share a Scribd company logo
:愕拿Set
悛 悧惡 愕拿 擧 悋惷忰 悴 愆 舉 擧悋 抻 悋 抻
愕拿 悴 悋抻 愕拿 悴 舉惠悋惡 :愀惘 惓悋
悛 愀惘悋 抻 悴悋 擧攣 愕拿
1.愀惘 悴惆Tabular Method
2.愀惘 惡悋Descriptive Method
1.:愀惘 悴惆Tabular Method
惠惶惘 悴 悋 悋 悋悋 悴悋 舉 惘 悴 愕拿 枉 愀惘 抻 惘 杤 悛 惆 惘擧 枉 擯  愃惘 
)( 擧 舉 惘舉悋悋.悛 惆 舉 悴惆悋 愕悋 愆悋 悴
Example: A= {a,b,c,d}, B= {Aslam, Saleem, Ahmed}
2.:悴 惡悋Descriptive Method
悽悋惶惠 悋 悴 舉 惘 悴 愕拿 悴 悛 惆 舉 悋愕惠惺悋 悴 悋 舉 愀惘 擧 悽惡 悋拿
. 愕悋惠 愕悋 愕悋悧 愕拿 杤  舉 惡悋 愀惘忰
Example: A= 愕拿 悴 惺惆惆 惆惘惠 拆悴 拆惘
B= 愕拿 悴 惺惆惆 惘惆 愕
:愕拿 忰惆惆Finite set:悧惡 愕拿 忰惆惆 擧 惠 愕擯悴 擲攣 惠惺惆悋惆 悴 惡惘 悴 悴 愕拿 悋
悛
Example: F= {1234}, G= {2, 4, 6, 8}
:愕拿 忰惆惆 愃惘Infinite set:愃惘 擧 惠 愕擯悴  擲攣 惠惺惆悋惆 悴 惡惘 悴 悴 愕拿 悋
悛 悧惡 愕拿 忰惆惆
Example: R= {1234.}, S= {2, 4, 6, 8.}
:愕拿 悽悋Null set:悛 悧惡 愕拿 悽悋 擧 惠 悴  惡惘 舉惡 枉 悴 愕拿 悋
Example :{ } 悋  悋悄
惺惆惆 惆惘惠Natural Number
.悛 悧惡 惺惆惆 惆惘惠 擧 惠 擔 愆惘惺 擧悋 舉 悴舉 惺惆惆 悋悋
:愀惘 悴 擧攣N = {1, 2, 3, 4, 5, ,6,. .. . . . . . . }
惺惆惆 拆惘悋Whole Number
( 悴舉 惺惆惆 悋悋0惠 擔 愆惘惘惺 擧悋 抻 )悛 悧惡 惺惆惆 拆惘悋 擧.
W= {0, 1, 2, 3, 4, 5, .}
惺惆惆 悋舉Odd Number
抻 悴舉 惺惆惆 悋悋.悛 悧惡 惺惆惆 悋舉 擧 惠 愕擯攵悴 悴  拆惘悋 愕悋
O= {1, 2, 3, 7, 9, }
惺惆惆 抻Even Number
.悛 悧惡 惺惆惆 抻 擧 惠 愕擯攵 悴 拆惘悋 愕悋 抻 悴舉 惺惆惆 悋悋
E= {2, 4, 6, 8, }
惺惆惆 愕悋
( 悴舉 惺惆惆 悋悋0擔 愆惘惺 擧悋 ).悛 悧惡 惺惆惆 愕悋 擧 惠 愕擯攵悴 擧悴 愕悋 愀惘 抻 舉悋拿 杤 悋 杤
Z= { + 0, +1, +2, +3, .}
惺惆惆 惘惆Prime Number
.悛 愕莒 惺惆惆 惘惆 擧 惠惡惡 愕擯攵悴 悴 愕悋 拆悋攣 拆悴 杤 舉 悴舉 惺惆惆 悋悋
Q = {4, 6, 8, 9, 10, }
惺惆惆 悋愀Rational Number
.惆惘悋悧 擧 惺惆惆 拆悴 悋 愕擯攵 悴 拆惘 悋 惠 悛攣悴 枉 悋攣拆惘 悋悧 擧 悴 惺惆惆 悋
惺惆惆 悋愀 愃惘Irrational Number
Q = {1/2, 1/3, 村, 6/11,..}
惺惆惆 忰Real Number
悋 悴 惺惆惆 悋愀 愃惘 杤 悋愀. 悛 悧惡 惺惆惆 忰 擧 拆
: 愕拿 悋惠忰惠Sub set
愕拿 悴舉A杤B杤 悴 愕拿 抻 惡 舉 悴悋B愕拿 悴惆 舉 惘 愕 悴悋A愕拿 惠 悴 悴惆 枉B愕拿 擧
愕拿A.悛 悧惡 愕拿 悋惠忰惠 悴
A= {1, 2 } , B= {1, 2, 3 }
CHAPTER # 01
SET: (CLASS OR AGREEMENT)
The concept of a set is fundamental in all branches of mathematics.
The well-defined collection of distinct objects.
 Objects are called elements or members or points of a set.
 Introduced by George cantor in 19 century.(to investigate the theory of infinite
series)
 Capital letters of English alphabet are used to denote sets.
 Small letters of English alphabet are used as element or member of a set.
 The symbol
 All members are closed n braces (Curly bracket { } ).
 All members are separated by Comma ,.
1. What is set?
 A set is a well defined collection of distinct objects which are called elements.
 The sets are usually denoted by capital letters A, B ,CX, Y, Z.
 Elements are denoted by a, b, c x, y, z.
1.1 Some Important Set of Number
Following notation will be used for sets of numbers :
 Set of Natural numbers : N= {1,2,3,..}
 Set of Whole numbers : W= {0,1,2,3,}
 Set of Integer :

More Related Content

Set and Type of Set

  • 1. :愕拿Set 悛 悧惡 愕拿 擧 悋惷忰 悴 愆 舉 擧悋 抻 悋 抻 愕拿 悴 悋抻 愕拿 悴 舉惠悋惡 :愀惘 惓悋 悛 愀惘悋 抻 悴悋 擧攣 愕拿 1.愀惘 悴惆Tabular Method 2.愀惘 惡悋Descriptive Method 1.:愀惘 悴惆Tabular Method 惠惶惘 悴 悋 悋 悋悋 悴悋 舉 惘 悴 愕拿 枉 愀惘 抻 惘 杤 悛 惆 惘擧 枉 擯 愃惘 )( 擧 舉 惘舉悋悋.悛 惆 舉 悴惆悋 愕悋 愆悋 悴 Example: A= {a,b,c,d}, B= {Aslam, Saleem, Ahmed} 2.:悴 惡悋Descriptive Method 悽悋惶惠 悋 悴 舉 惘 悴 愕拿 悴 悛 惆 舉 悋愕惠惺悋 悴 悋 舉 愀惘 擧 悽惡 悋拿 . 愕悋惠 愕悋 愕悋悧 愕拿 杤 舉 惡悋 愀惘忰 Example: A= 愕拿 悴 惺惆惆 惆惘惠 拆悴 拆惘 B= 愕拿 悴 惺惆惆 惘惆 愕 :愕拿 忰惆惆Finite set:悧惡 愕拿 忰惆惆 擧 惠 愕擯悴 擲攣 惠惺惆悋惆 悴 惡惘 悴 悴 愕拿 悋 悛 Example: F= {1234}, G= {2, 4, 6, 8} :愕拿 忰惆惆 愃惘Infinite set:愃惘 擧 惠 愕擯悴 擲攣 惠惺惆悋惆 悴 惡惘 悴 悴 愕拿 悋 悛 悧惡 愕拿 忰惆惆 Example: R= {1234.}, S= {2, 4, 6, 8.} :愕拿 悽悋Null set:悛 悧惡 愕拿 悽悋 擧 惠 悴 惡惘 舉惡 枉 悴 愕拿 悋
  • 2. Example :{ } 悋 悋悄 惺惆惆 惆惘惠Natural Number .悛 悧惡 惺惆惆 惆惘惠 擧 惠 擔 愆惘惺 擧悋 舉 悴舉 惺惆惆 悋悋 :愀惘 悴 擧攣N = {1, 2, 3, 4, 5, ,6,. .. . . . . . . } 惺惆惆 拆惘悋Whole Number ( 悴舉 惺惆惆 悋悋0惠 擔 愆惘惘惺 擧悋 抻 )悛 悧惡 惺惆惆 拆惘悋 擧. W= {0, 1, 2, 3, 4, 5, .} 惺惆惆 悋舉Odd Number 抻 悴舉 惺惆惆 悋悋.悛 悧惡 惺惆惆 悋舉 擧 惠 愕擯攵悴 悴 拆惘悋 愕悋 O= {1, 2, 3, 7, 9, } 惺惆惆 抻Even Number .悛 悧惡 惺惆惆 抻 擧 惠 愕擯攵 悴 拆惘悋 愕悋 抻 悴舉 惺惆惆 悋悋 E= {2, 4, 6, 8, } 惺惆惆 愕悋 ( 悴舉 惺惆惆 悋悋0擔 愆惘惺 擧悋 ).悛 悧惡 惺惆惆 愕悋 擧 惠 愕擯攵悴 擧悴 愕悋 愀惘 抻 舉悋拿 杤 悋 杤 Z= { + 0, +1, +2, +3, .} 惺惆惆 惘惆Prime Number .悛 愕莒 惺惆惆 惘惆 擧 惠惡惡 愕擯攵悴 悴 愕悋 拆悋攣 拆悴 杤 舉 悴舉 惺惆惆 悋悋 Q = {4, 6, 8, 9, 10, } 惺惆惆 悋愀Rational Number .惆惘悋悧 擧 惺惆惆 拆悴 悋 愕擯攵 悴 拆惘 悋 惠 悛攣悴 枉 悋攣拆惘 悋悧 擧 悴 惺惆惆 悋 惺惆惆 悋愀 愃惘Irrational Number Q = {1/2, 1/3, 村, 6/11,..} 惺惆惆 忰Real Number 悋 悴 惺惆惆 悋愀 愃惘 杤 悋愀. 悛 悧惡 惺惆惆 忰 擧 拆 : 愕拿 悋惠忰惠Sub set 愕拿 悴舉A杤B杤 悴 愕拿 抻 惡 舉 悴悋B愕拿 悴惆 舉 惘 愕 悴悋A愕拿 惠 悴 悴惆 枉B愕拿 擧 愕拿A.悛 悧惡 愕拿 悋惠忰惠 悴 A= {1, 2 } , B= {1, 2, 3 }
  • 3. CHAPTER # 01 SET: (CLASS OR AGREEMENT) The concept of a set is fundamental in all branches of mathematics. The well-defined collection of distinct objects. Objects are called elements or members or points of a set. Introduced by George cantor in 19 century.(to investigate the theory of infinite series) Capital letters of English alphabet are used to denote sets. Small letters of English alphabet are used as element or member of a set. The symbol All members are closed n braces (Curly bracket { } ). All members are separated by Comma ,. 1. What is set? A set is a well defined collection of distinct objects which are called elements. The sets are usually denoted by capital letters A, B ,CX, Y, Z. Elements are denoted by a, b, c x, y, z. 1.1 Some Important Set of Number Following notation will be used for sets of numbers : Set of Natural numbers : N= {1,2,3,..} Set of Whole numbers : W= {0,1,2,3,} Set of Integer :