ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Company presentation
Shape Characterization Using
Dynamic & Static Light
Scattering
Andrea Vaccaro PhD, CTO
LS Instruments AG
In SLS/DLS, a laser beam is sent through a colloidal sample, the average scattered intensity and the
auto/cross correlation of the resulting scattered light are computed.
Why choose DLS as a characterization method?
? Fast
? Simple measurements with easy sample preparation
? In-situ, non-destructive approach
Measuring particle size reliably
2
Static and Dynamic Light Scattering (SLS/DLS)
?
3
SLS
The measured intensity can be divided up into
contributions from within particles (intraparticle) and
between particles (interparticle):
I(q) ¡Ö c ? Mw ? V? ? P(q) ? S(q)
The Radius of Gyration can be
determined from the so-called Guinier
Plot:
Slope =
Ln (I)
Guinier regime
??
DLS
4
Intensity
fluctuation
s
I
t
<I
> ?
?
Diffusion
Coefficient
?h=
?? ?
6 ?? ?
Stokes-
Einstein
Relation
Particle Size
Intensity
correlation function
g
2
(t)-1
¦Ó
Correlato
r
Structural Information from DLS/SLS: Coil to Globule Transition
5
Sun S. et al., J. Chem. Phys. 73, 5971 (1980)
?h
??
Temperature
Shape from DLS/SLS
6
Can we get detailed shape and size information
from SLS/DLS?
7
Depolarized Static and Dynamic Light Scattering (D-SLS/D-DLS)
? In D-SLS /D-DLS we add a polarizer at detection before the detector
? Depending on the orientation of the polarizer, vertical or horizontal we can
measure in two different configurations, VV and VH
? In D-SLS /D-DLS gives access to advanced shape and size information
Decorrelation for Anisotropic Particles
8
Diffusion
Translational
Diffusion
??
Rotational
Diffusion
??
For anisotropic particles, the diffusion mechanism
is more complex as it involves translations and
rotations
D-DLS in VV Configuration
9
Intensity
fluctuation
s
???
t
<I
>
Intensity
correlation function
(t)-1
¦Ó
Correlato
r
?? , ??
R. Nixon-Luke, G. Bryant, Part. Part. Syst. Charact. 2019, 36, 1800388.
D-DLS in VV Configuration: The Tobacco Mosaic Virus
10
For small scattering angles, :
??
??
?1? ??0 (? ) exp(? ?? ?2
? )
log
??
??
?1
?
? ?? ?? ?
2
?
log
?
?
??
?1
?
?
For small scattering angles, the logarithmic plot of
the correlation function is linear and yields the
translational diffusion coefficient,
? ?? ?2
Wada A. et al., J. Chem. Phys. 55, 1798 (1971)
Tobacco Virus
D-DLS in VV Configuration: The Tobacco Mosaic Virus
11
log
?
?
??
?1
?
?
For large :
??
??
?1 ? ?2 exp (?( ?? ?
2
+6 ? ?)? )
log
??
??
?1
?
? ? ?(?? ?
2
+6 ? ?)?
?(?? ?
2
+6 ??)
For large the logarithmic plot of the correlation
function is linear and yields the rotational diffusion
coefficient,
Wada A. et al., J. Chem. Phys. 55, 1798 (1971)
Shape and Size from Diffusion Coefficients
For an axisymmetric particle of major size, , minor size, ,
and anisotropy factor
?? , ??
Microhydrodynami
cs
?,?,?
For rodlike particles, such as Tobacco Mosaic Virus:
? ?=
1
3
?? (ln ? ? ?)
? ?0 ?
3
?? =
1
3
?? (ln ? ?? )
? ?0 ?
?? =0.312+
0.565
?
+
0.100
?
?
??=?0.662+
0.917
?
?
0.050
?
?
Ortega A.; Garc a
?? de la Torre J., J. Chem. Phys. 119, 9914¨C9919 (2003)
Shape and Size
?
?
Takeaways
? In VV Configuration at low angles DLS provides access to the
translational diffusion of anisotropic particles
? At large angles and large lag times, knowing the
translational diffusion coefficient, we can obtain the
rotational diffusion coefficient
? From translational and rotational diffusion coefficients we
can obtain size and shape parameters of anisotropic
particles
? The procedure is complicated by the fact that in general
correlation functions display an angle-dependent double
decay
D-DLS in VH Configuration
14
Intensity
fluctuation
s
?? ?
t
<I
>
Intensity
correlation function
(t)-1
¦Ó
Correlato
r
?? , ??
?2
? ?
=1+ ? exp (?2 (?? ?
2
+ 6 ?? )?)
Simpler single exponential
decay
R. Nixon-Luke, G. Bryant, Part. Part. Syst. Charact. 2019, 36, 1800388.
Decay Rate
D-DLS in VH Configuration
15
? ¡Ô ?2
?? +6 ? ?
? In VH configuration we obtain a simpler
single exponential decay
? Plotting the decay rate vs we obtain the
translational diffusion coefficient from
the slope and the rotational diffusion
coefficient from the intercept of the
linear plot
? The procedure is simpler than in the VV
configuration case
Decay Rate:
? ??
??
??
?
D-DLS in VH Configuration: Magnetic Nanoparticles with Tunable
Shape Anisotropy
16
? Anisotropic Magnetic NPs
characterized by TEM and D-
DLS
? The two techniques agree thus
confirming the validity of D-
DLS
Martchenko I. et al., J. Chem. Phys. B 115(49), 14838-14845 (2011)
Contact us
LS Instruments AG
Passage du Cardinal 1 1700 Fribourg Switzerland
www.lsinstruments.ch

More Related Content

Shape Characterization Using Dynamic & Static Light Scattering

  • 1. Company presentation Shape Characterization Using Dynamic & Static Light Scattering Andrea Vaccaro PhD, CTO LS Instruments AG
  • 2. In SLS/DLS, a laser beam is sent through a colloidal sample, the average scattered intensity and the auto/cross correlation of the resulting scattered light are computed. Why choose DLS as a characterization method? ? Fast ? Simple measurements with easy sample preparation ? In-situ, non-destructive approach Measuring particle size reliably 2 Static and Dynamic Light Scattering (SLS/DLS) ?
  • 3. 3 SLS The measured intensity can be divided up into contributions from within particles (intraparticle) and between particles (interparticle): I(q) ¡Ö c ? Mw ? V? ? P(q) ? S(q) The Radius of Gyration can be determined from the so-called Guinier Plot: Slope = Ln (I) Guinier regime ??
  • 4. DLS 4 Intensity fluctuation s I t <I > ? ? Diffusion Coefficient ?h= ?? ? 6 ?? ? Stokes- Einstein Relation Particle Size Intensity correlation function g 2 (t)-1 ¦Ó Correlato r
  • 5. Structural Information from DLS/SLS: Coil to Globule Transition 5 Sun S. et al., J. Chem. Phys. 73, 5971 (1980) ?h ?? Temperature
  • 6. Shape from DLS/SLS 6 Can we get detailed shape and size information from SLS/DLS?
  • 7. 7 Depolarized Static and Dynamic Light Scattering (D-SLS/D-DLS) ? In D-SLS /D-DLS we add a polarizer at detection before the detector ? Depending on the orientation of the polarizer, vertical or horizontal we can measure in two different configurations, VV and VH ? In D-SLS /D-DLS gives access to advanced shape and size information
  • 8. Decorrelation for Anisotropic Particles 8 Diffusion Translational Diffusion ?? Rotational Diffusion ?? For anisotropic particles, the diffusion mechanism is more complex as it involves translations and rotations
  • 9. D-DLS in VV Configuration 9 Intensity fluctuation s ??? t <I > Intensity correlation function (t)-1 ¦Ó Correlato r ?? , ?? R. Nixon-Luke, G. Bryant, Part. Part. Syst. Charact. 2019, 36, 1800388.
  • 10. D-DLS in VV Configuration: The Tobacco Mosaic Virus 10 For small scattering angles, : ?? ?? ?1? ??0 (? ) exp(? ?? ?2 ? ) log ?? ?? ?1 ? ? ?? ?? ? 2 ? log ? ? ?? ?1 ? ? For small scattering angles, the logarithmic plot of the correlation function is linear and yields the translational diffusion coefficient, ? ?? ?2 Wada A. et al., J. Chem. Phys. 55, 1798 (1971) Tobacco Virus
  • 11. D-DLS in VV Configuration: The Tobacco Mosaic Virus 11 log ? ? ?? ?1 ? ? For large : ?? ?? ?1 ? ?2 exp (?( ?? ? 2 +6 ? ?)? ) log ?? ?? ?1 ? ? ? ?(?? ? 2 +6 ? ?)? ?(?? ? 2 +6 ??) For large the logarithmic plot of the correlation function is linear and yields the rotational diffusion coefficient, Wada A. et al., J. Chem. Phys. 55, 1798 (1971)
  • 12. Shape and Size from Diffusion Coefficients For an axisymmetric particle of major size, , minor size, , and anisotropy factor ?? , ?? Microhydrodynami cs ?,?,? For rodlike particles, such as Tobacco Mosaic Virus: ? ?= 1 3 ?? (ln ? ? ?) ? ?0 ? 3 ?? = 1 3 ?? (ln ? ?? ) ? ?0 ? ?? =0.312+ 0.565 ? + 0.100 ? ? ??=?0.662+ 0.917 ? ? 0.050 ? ? Ortega A.; Garc a ?? de la Torre J., J. Chem. Phys. 119, 9914¨C9919 (2003) Shape and Size ? ?
  • 13. Takeaways ? In VV Configuration at low angles DLS provides access to the translational diffusion of anisotropic particles ? At large angles and large lag times, knowing the translational diffusion coefficient, we can obtain the rotational diffusion coefficient ? From translational and rotational diffusion coefficients we can obtain size and shape parameters of anisotropic particles ? The procedure is complicated by the fact that in general correlation functions display an angle-dependent double decay
  • 14. D-DLS in VH Configuration 14 Intensity fluctuation s ?? ? t <I > Intensity correlation function (t)-1 ¦Ó Correlato r ?? , ?? ?2 ? ? =1+ ? exp (?2 (?? ? 2 + 6 ?? )?) Simpler single exponential decay R. Nixon-Luke, G. Bryant, Part. Part. Syst. Charact. 2019, 36, 1800388. Decay Rate
  • 15. D-DLS in VH Configuration 15 ? ¡Ô ?2 ?? +6 ? ? ? In VH configuration we obtain a simpler single exponential decay ? Plotting the decay rate vs we obtain the translational diffusion coefficient from the slope and the rotational diffusion coefficient from the intercept of the linear plot ? The procedure is simpler than in the VV configuration case Decay Rate: ? ?? ?? ?? ?
  • 16. D-DLS in VH Configuration: Magnetic Nanoparticles with Tunable Shape Anisotropy 16 ? Anisotropic Magnetic NPs characterized by TEM and D- DLS ? The two techniques agree thus confirming the validity of D- DLS Martchenko I. et al., J. Chem. Phys. B 115(49), 14838-14845 (2011)
  • 17. Contact us LS Instruments AG Passage du Cardinal 1 1700 Fribourg Switzerland www.lsinstruments.ch