This document discusses methods for automated machine learning (AutoML) and optimization of hyperparameters. It focuses on accelerating the Nelder-Mead method for hyperparameter optimization using predictive parallel evaluation. Specifically, it proposes using a Gaussian process to model the objective function and perform predictive evaluations in parallel to reduce the number of actual function evaluations needed by the Nelder-Mead method. The results show this approach reduces evaluations by 49-63% compared to baseline methods.
Imputation of Missing Values using Random ForestSatoshi Kato
?
missForest packageの紹介
“MissForest - nonparametric missing value imputation for mixed-type data (DJ Stekhoven, P Bühlmann (2011), Bioinformatics 28 (1), 112-118)
The document discusses hyperparameter optimization in machine learning models. It introduces various hyperparameters that can affect model performance, and notes that as models become more complex, the number of hyperparameters increases, making manual tuning difficult. It formulates hyperparameter optimization as a black-box optimization problem to minimize validation loss and discusses challenges like high function evaluation costs and lack of gradient information.
1) Canonical correlation analysis (CCA) is a statistical method that analyzes the correlation relationship between two sets of multidimensional variables.
2) CCA finds linear transformations of the two sets of variables so that their correlation is maximized. This can be formulated as a generalized eigenvalue problem.
3) The number of dimensions of the transformed variables is determined using Bartlett's test, which tests the eigenvalues against a chi-squared distribution.
The document contains mathematical equations and notation related to machine learning and probability distributions. It involves defining terms like P(y|x), which represents the probability of outcome y given x, and exploring ways to calculate the expected value of an objective function Rn under different probability distributions p and q over the variables x and y. The goal appears to be to select parameters θ to optimize some objective while accounting for the distributions of the training data.
Imputation of Missing Values using Random ForestSatoshi Kato
?
missForest packageの紹介
“MissForest - nonparametric missing value imputation for mixed-type data (DJ Stekhoven, P Bühlmann (2011), Bioinformatics 28 (1), 112-118)
The document discusses hyperparameter optimization in machine learning models. It introduces various hyperparameters that can affect model performance, and notes that as models become more complex, the number of hyperparameters increases, making manual tuning difficult. It formulates hyperparameter optimization as a black-box optimization problem to minimize validation loss and discusses challenges like high function evaluation costs and lack of gradient information.
1) Canonical correlation analysis (CCA) is a statistical method that analyzes the correlation relationship between two sets of multidimensional variables.
2) CCA finds linear transformations of the two sets of variables so that their correlation is maximized. This can be formulated as a generalized eigenvalue problem.
3) The number of dimensions of the transformed variables is determined using Bartlett's test, which tests the eigenvalues against a chi-squared distribution.
The document contains mathematical equations and notation related to machine learning and probability distributions. It involves defining terms like P(y|x), which represents the probability of outcome y given x, and exploring ways to calculate the expected value of an objective function Rn under different probability distributions p and q over the variables x and y. The goal appears to be to select parameters θ to optimize some objective while accounting for the distributions of the training data.
Strata Beijing 2017: Jumpy, a python interface for nd4jAdam Gibson
?
GPUs should complement, not replace, the Hadoop ecosystem for big data workloads. Replacing the entire big data stack would be too costly. The presenter believes GPUs are best suited for accelerated computation and a few other use cases to gain an initial foothold in the market. Existing Python interfaces to machine learning frameworks rely too heavily on network communication and serialization, introducing significant overhead. Nd4j and Jumpy provide alternatives that use direct C++ interfaces and pointers for lower latency between Python and deep learning operations on CPU and GPU.
日本生体医工学会中国四国支部2018で発表した研究です.
題目「ゆらぐ脳波データからどのように集中度合いを可視化するか」
Created by 上原賢祐
詳細はこちら: https://kenyu-life.com/2018/10/30/eeg_constress_value/
?アブストラクト?
ヒト脳波は心理?生理状態によって大きく影響される生体信号であるがゆえに,集中度合い等をはじめとしたヒトの状態推定を可能とする.脳波信号の一般的な理解では,ヒトが一旦集中状態に入ると周波数パワーが高くなる傾向にあるため,周波数解析により脳波に含まれる特定の周波数帯域の含有量を見ることは1つの有効な状態推定の手立てである.しかし,ヒト脳波はゆらぎと言われる非線形な性質を持つため,周波数解析などの線形的な信号処理では,ヒト脳波が有する真の情報を取り出すことができないと考えられる.すなわち,ヒトの集中状態を可視化するにあたっては,脳波信号の「ゆらぎ」を考慮し,波形の細かい変化の仕方自体にも眼を向ける必要があると考えられる.
そこで本研究では,非線形な解析手法を用いた脳波信号の解析を行い,ヒトの集中度合いの可視化を目的とする.脳波信号の振る舞いを一自由度の非線形振動子によってモデル化し,波形の細かい変化に対応させるため,モデル中の各係数パラメータを実験的に同定した.その結果,脳波の定量化をすることが可能であることを確認し,各モデルパラメータの相関値によって集中度合いを可視化できることが分かった.
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
?
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
12. ナイーブベイズによる异常行动検出
特定のユーザに関するセッションの発生確率が
他のユーザに比べて優位に小さくなった時にアラート
訓練データ
ユーザuの ユーザu以外の
コマンド出現パターン コマンド出現パターン
出現確率
a b c ... 出現確率 a b c ...
P ? u ( x 1,. .. , x N )
スコアリング P u ( x 1,. .. , x N )
16. 行动モデリング
各セッションはK個の成分を持つ
隠れマルコフモデルに従って生起されていると仮定
セッションyjの発生確率
K
P ( y j | θ)= ∑k =1 π k P k ( y j | θk )
P k ( y j | θ k )=∑(s γ k?∏ a k (st | s t?1 , ... , s t?n )?∏ bk ( y t | st )
1,. .. , s T )
j
状態ベクトルの 状態変数の シンボルの
初期確率分布 遷移確率 出力確率
状態系列 S t?1 St S t +1
出力系列 y t ?1 yt y t +1
隠れマルコフモデル