ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Bonding &
Structure
Course : Engineering Materials
Course Code: ID-301
Credit Hours: 3
Topic :
Department of Chemical Engineering
NFC Institute of Engineering & Technology, Multan
Agenda
• Why we study structures
• Crystal Structure
• Types of Solids
• Lattice
• Unit Cell
• Lattice Parameters & Constants
• Classification of Lattices
• Metallic Crystal Structures
• Atomic Packing Factor
• Coordination Number
• Stacking Sequences
• Comparisons
• Anisotropy
• Isotropy
Why we Study Crystal Structure ?
• Properties Changes
• Slip Systems
Like Diamond & Graphite
Deformation Occurs by shear stress
DiamondGraphite
Crystal Structure
• The structure of all crystals can be described in term
of a lattice, with the group of atoms attached to every
lattice point
• Basis (Motif)
• Lattice + Motif = Crystal
Types of Solids
• Crystalline
• Amorphous
Long Range Order, Repetitive Manner, Periodic
Arrangement, High Bond Energy, Closed Packed
Structure, Sharp Melting Point, Cleavage Property,
(Ex: NaCl, CsF, Diamond ..)
Short Range Order, Random Manner, Non Periodic
Arrangement, Lower Bond Energy, Less Dense Packed,
Less Melting Point, Cleavage Property, (Ex: Glass,
Rubber, Plastic ..)
• Poly-crystalline
• Single Crystal
• If a crystalline material consists of only one large crystal, we refer
to it as a single crystal. Single crystals are useful in many electronic
and optical applications
• Atoms are in a repeating or periodic array over the entire extent of
the material
• Object composed of randomly oriented crystals, formed by rapid
solidification
• Comprised of many small crystals or grains
Formation of Polycrystalline
Material
Difference Between Lattice &
Crystal
• A 3D arrangement of atoms
• It’s physical object (ex: weight, density..)
• A 3D periodic arrangement of points
• It’s geometric Concept (ex: triangle,
Square..)
Energy and Packing of
Crystalline &
Amorphous Structure
Dense, regular-packed structures tend to
have lower energy
Lattice + Motif (Basis) =
Crystal ?
• A three dimensional periodic
array of points conceding
with atoms position.
Lattice
Unit Cell
• A region of space which can
generate the entire lattice or
(crystal) by repetition
through lattice translation.
• The small repeat entities of
crystal structure called unit
cell.
• Its help us to describe the
crystal structure may be
primitive and non primitive
Characterized by
1) Types of atoms & their
radii
2) Cell dimension
3) No: of atoms/unit cell
4) Coordination number
5) APF (Atomic packing
factor)
Square Unit Cell
Hexagonal
Unit Cell
Crystal Lattice
Squares Rectangles Hexagons
Lattice Parameters
• Interaxial angles
1
2
What do
you think
which
steps are
correct ?
Lattice
Parameter
Lattice
Parameter Unit Cell
Unit Cell
Lattice
Lattice
Motif Crystal
Crystal
Classification of Lattices
• 7 Crystal Systems or unit cell & 14 Bravais Systems
• Crystal Systems are
1) Cubic
2) Tetragonal
3) Orthorhombic
4) Rhombohedral
5) Hexagonal
6) Monoclinic
7) Triclinic
Structure and its types
Metallic Crystal Structure
• The atomic bonding in this group of materials is metallic
and thus non-directional in nature
• For metals, using the hard-sphere model for the crystal
structure, each sphere represents an ion core
• Three principle crystal structures for metals are:
1) Body Centered Crystal (BCC)
2) Face Centered Crystal (FCC)
3) Hexagonal Closed Packed (HCP)
Body Centered Cubic
No: of atoms/unit
cell : 2
Coordination no : 8 APF = 0.68
Ex: Cr, Molybedenum,
Tantalum. Fe (alpha)
Face Centered Crystal
No: of atoms/unit
cell : 4
Coordination no :
12
APF = 0.74
Ex: Al, Cu, Pb, Ni,
Ag, Pt
Hexagonal Closed Packed
No: of atoms/unit
cell : 6
Coordination no :
12
APF = 0.74
Ex: Beryllium, Cadmium,
Titanium, Magnesium
Atomic Packing Factor
• Packing Efficiency
• It tell us how tightly atoms are packed
• The packing factor or atomic packing fraction is the
fraction of space occupied by atoms, assuming that the
atoms are hard spheres. The general expression for the
packing factor is
APF =
ð‘µð’ ð’ð’‡ ð’‚ð’•ð’ð’Žð’” ð’‘ð’†ð’“ ð’–ð’ð’Šð’• ð’„ð’†ð’ð’ ð’™ ð‘½ð’ð’ð’–ð’Žð’† ð’ð’‡ ð’†ð’‚ð’„ð’‰ ð’‚ð’•ð’ð’Ž
ð‘½ð’ð’ð’–ð’Žð’† ð’ð’‡ ð’–ð’ð’Šð’• ð’„ð’†ð’ð’
Steps To Calculate Atomic
Packing Factor
1
2
4
3
Calculate Number of Atoms
Calculate Volume of Atoms
Calculate Atomic Radius
Steps
Calculate Area of Cube
Atomic Packing Factor (BCC)
APF =
ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š
ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™
• Coordinate Number : 8
• Number of Atoms : 2
• Volume of Atom :
4
3
ðœ‹ð‘Ÿ3
= 8.373ð‘Ÿ3
• Volume of Unit Cell : ð‘Ž3
• Atomic Radius :
√3
4
a
Atomic Packing Factor (BCC)
• Radius Calculation :
ð¶2
= ð´2
+ ðµ 2
ð´ð·2
= ð´ð¶2
+ ð¶ð·2
As; AD = 4r
ð´ð¶2
= ð´ðµ2
+ ðµð¶2
ð´ð¶2
= ð‘Ž2
+ ð‘Ž2
ð´ð·2 = ð´ð¶2 + ð¶ð·2
4ð‘Ÿ2
= 2ð‘Ž2
+ ð‘Ž2
16ð‘Ÿ2
= 3ð‘Ž2
r =
√3
4
a a =
4ð‘Ÿ
√4 v=12.32ð‘Ÿ3
• Volume of atom = 8. ðŸ‘ðŸ•ðŸ‘ð’“ ðŸ‘
• Volume of unit cell = 1ðŸ. ðŸ‘ðŸð’“ ðŸ‘
Atomic Packing Factor (BCC)
APF =
ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š
ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™
APF =
8.373ð‘Ÿ3
12.32ð‘Ÿ3
APF = 0.68 or 68%
Atomic Packing Factor (FCC)
APF =
ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š
ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™
• Coordinate Number : 12
• Number of Atoms : 4
• Volume of Atom :
4
3
ðœ‹ð‘Ÿ3
8.373ð‘Ÿ3
• Volume of Unit Cell : ð‘Ž3
• Atomic Radius :
ð‘Ž
2√2
Atomic Packing Factor (FCC)
APF =
ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š
ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™
APF =
4 ð‘¥ (
ð‘Ž
2 2
)3 4
3
ð‘¥ 3.14
ð‘Ž3
APF = 0.74 or 74%
Atomic Packing Factor (HCP)
• Coordinate Number : 12
• Number of Atoms : 6
• Volume of Atom :
4
3
ðœ‹ð‘Ÿ3
8.373ð‘Ÿ3
• Volume of Unit Cell : 𑉠= ðµ ð‘¥ ð»
• Atomic Radius : ð‘Ž = 2ð‘Ÿ
• c/a : 1.633
Atomic Packing Factor (HCP)
APF =
ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š
ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™
• Volume of unit cell :
V = B x H
Base of triangle =
1
2
x a x asin60
=
3ð‘Ž2
4
x 6
=
3 3
2
ð‘Ž2
x c
Atomic Packing Factor (HCP)
APF =
6 ð‘¥
4
3
ð‘¥ 3.14 ð‘¥ ð‘Ÿ3
3 3
2
ð‘Ž2 ð‘¥ ð‘
ð‘Ž = 2ð‘Ÿ ð‘Žð‘›ð‘‘
ð‘
ð‘Ž
= 1.633
=
6 ð‘¥
4
3
ð‘¥ 3.14 ð‘¥ (
ð‘Ž
2
)3
3 3
2
ð‘Ž2 ð‘¥ ð‘
=
12.55ð‘Ž
10.392ð‘
= 1.207 0.612
APF = 0.74 or 74%
APF =
ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š
ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™
FCC Stacking Sequence
Closed
Packed
Crystal
Comparison of FCC,
BCC, HCP
Crystal
Structure
Coordination
Number
Packing
Factor
Closed Packed
Direction
BCC
FCC
HCP
8
12
12
0.68
0.74
0.74
Body
Diagonal
Face
Diagonal
Hexagonal
Side
• An anisotropic material is a material which does not behave
the same way in all directions. Take wood for example. Wood
is very strong along the grain. Against the grain, however, it
will easily break.
• A different chemical bonding in all directions is also a
condition for anisotropy
• Poly Crystal (Property Vary with Direction)
Anisotropy
Figure 7-1
Anisotropic
materials:
(a) rolled material,
(b) wood,
(c) glass-fiber cloth
in an epoxy matrix,
and
(d) a crystal with
cubic unit cell.
• The opposite of an anisotropic material is an isotropic
material. Most metals (steel, aluminum) are isotropic
materials. They respond the same way in all directions.
• Substances in which measured (physical)properties are
independent of the direction of measurement are isotropic.
• Ex : Single Crystal ( Properties do not vary with
direction)
• Real Materials (Isotropic)
Isotropy

More Related Content

Structure and its types

  • 1. Bonding & Structure Course : Engineering Materials Course Code: ID-301 Credit Hours: 3 Topic : Department of Chemical Engineering NFC Institute of Engineering & Technology, Multan
  • 2. Agenda • Why we study structures • Crystal Structure • Types of Solids • Lattice • Unit Cell • Lattice Parameters & Constants • Classification of Lattices • Metallic Crystal Structures • Atomic Packing Factor • Coordination Number • Stacking Sequences • Comparisons • Anisotropy • Isotropy
  • 3. Why we Study Crystal Structure ? • Properties Changes • Slip Systems Like Diamond & Graphite Deformation Occurs by shear stress DiamondGraphite
  • 4. Crystal Structure • The structure of all crystals can be described in term of a lattice, with the group of atoms attached to every lattice point • Basis (Motif) • Lattice + Motif = Crystal
  • 5. Types of Solids • Crystalline • Amorphous Long Range Order, Repetitive Manner, Periodic Arrangement, High Bond Energy, Closed Packed Structure, Sharp Melting Point, Cleavage Property, (Ex: NaCl, CsF, Diamond ..) Short Range Order, Random Manner, Non Periodic Arrangement, Lower Bond Energy, Less Dense Packed, Less Melting Point, Cleavage Property, (Ex: Glass, Rubber, Plastic ..)
  • 6. • Poly-crystalline • Single Crystal • If a crystalline material consists of only one large crystal, we refer to it as a single crystal. Single crystals are useful in many electronic and optical applications • Atoms are in a repeating or periodic array over the entire extent of the material • Object composed of randomly oriented crystals, formed by rapid solidification • Comprised of many small crystals or grains
  • 8. Difference Between Lattice & Crystal • A 3D arrangement of atoms • It’s physical object (ex: weight, density..) • A 3D periodic arrangement of points • It’s geometric Concept (ex: triangle, Square..)
  • 9. Energy and Packing of Crystalline & Amorphous Structure Dense, regular-packed structures tend to have lower energy
  • 10. Lattice + Motif (Basis) = Crystal ? • A three dimensional periodic array of points conceding with atoms position. Lattice
  • 11. Unit Cell • A region of space which can generate the entire lattice or (crystal) by repetition through lattice translation. • The small repeat entities of crystal structure called unit cell. • Its help us to describe the crystal structure may be primitive and non primitive Characterized by 1) Types of atoms & their radii 2) Cell dimension 3) No: of atoms/unit cell 4) Coordination number 5) APF (Atomic packing factor)
  • 14. Lattice Parameters • Interaxial angles 1 2 What do you think which steps are correct ? Lattice Parameter Lattice Parameter Unit Cell Unit Cell Lattice Lattice Motif Crystal Crystal
  • 15. Classification of Lattices • 7 Crystal Systems or unit cell & 14 Bravais Systems • Crystal Systems are 1) Cubic 2) Tetragonal 3) Orthorhombic 4) Rhombohedral 5) Hexagonal 6) Monoclinic 7) Triclinic
  • 17. Metallic Crystal Structure • The atomic bonding in this group of materials is metallic and thus non-directional in nature • For metals, using the hard-sphere model for the crystal structure, each sphere represents an ion core • Three principle crystal structures for metals are: 1) Body Centered Crystal (BCC) 2) Face Centered Crystal (FCC) 3) Hexagonal Closed Packed (HCP)
  • 18. Body Centered Cubic No: of atoms/unit cell : 2 Coordination no : 8 APF = 0.68 Ex: Cr, Molybedenum, Tantalum. Fe (alpha)
  • 19. Face Centered Crystal No: of atoms/unit cell : 4 Coordination no : 12 APF = 0.74 Ex: Al, Cu, Pb, Ni, Ag, Pt
  • 20. Hexagonal Closed Packed No: of atoms/unit cell : 6 Coordination no : 12 APF = 0.74 Ex: Beryllium, Cadmium, Titanium, Magnesium
  • 21. Atomic Packing Factor • Packing Efficiency • It tell us how tightly atoms are packed • The packing factor or atomic packing fraction is the fraction of space occupied by atoms, assuming that the atoms are hard spheres. The general expression for the packing factor is APF = ð‘µð’ ð’ð’‡ ð’‚ð’•ð’ð’Žð’” ð’‘ð’†ð’“ ð’–ð’ð’Šð’• ð’„ð’†ð’ð’ ð’™ ð‘½ð’ð’ð’–ð’Žð’† ð’ð’‡ ð’†ð’‚ð’„ð’‰ ð’‚ð’•ð’ð’Ž ð‘½ð’ð’ð’–ð’Žð’† ð’ð’‡ ð’–ð’ð’Šð’• ð’„ð’†ð’ð’
  • 22. Steps To Calculate Atomic Packing Factor 1 2 4 3 Calculate Number of Atoms Calculate Volume of Atoms Calculate Atomic Radius Steps Calculate Area of Cube
  • 23. Atomic Packing Factor (BCC) APF = ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ • Coordinate Number : 8 • Number of Atoms : 2 • Volume of Atom : 4 3 ðœ‹ð‘Ÿ3 = 8.373ð‘Ÿ3 • Volume of Unit Cell : ð‘Ž3 • Atomic Radius : √3 4 a
  • 24. Atomic Packing Factor (BCC) • Radius Calculation : ð¶2 = ð´2 + ðµ 2 ð´ð·2 = ð´ð¶2 + ð¶ð·2 As; AD = 4r ð´ð¶2 = ð´ðµ2 + ðµð¶2 ð´ð¶2 = ð‘Ž2 + ð‘Ž2 ð´ð·2 = ð´ð¶2 + ð¶ð·2 4ð‘Ÿ2 = 2ð‘Ž2 + ð‘Ž2 16ð‘Ÿ2 = 3ð‘Ž2 r = √3 4 a a = 4𑟠√4 v=12.32ð‘Ÿ3
  • 25. • Volume of atom = 8. ðŸ‘ðŸ•ðŸ‘𒓠👠• Volume of unit cell = 1ðŸ. ðŸ‘ðŸð’“ 👠Atomic Packing Factor (BCC) APF = ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ APF = 8.373ð‘Ÿ3 12.32ð‘Ÿ3 APF = 0.68 or 68%
  • 26. Atomic Packing Factor (FCC) APF = ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ • Coordinate Number : 12 • Number of Atoms : 4 • Volume of Atom : 4 3 ðœ‹ð‘Ÿ3 8.373ð‘Ÿ3 • Volume of Unit Cell : ð‘Ž3 • Atomic Radius : ð‘Ž 2√2
  • 27. Atomic Packing Factor (FCC) APF = ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ APF = 4 ð‘¥ ( ð‘Ž 2 2 )3 4 3 ð‘¥ 3.14 ð‘Ž3 APF = 0.74 or 74%
  • 28. Atomic Packing Factor (HCP) • Coordinate Number : 12 • Number of Atoms : 6 • Volume of Atom : 4 3 ðœ‹ð‘Ÿ3 8.373ð‘Ÿ3 • Volume of Unit Cell : 𑉠= ðµ ð‘¥ ð» • Atomic Radius : ð‘Ž = 2𑟠• c/a : 1.633
  • 29. Atomic Packing Factor (HCP) APF = ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ • Volume of unit cell : V = B x H Base of triangle = 1 2 x a x asin60 = 3ð‘Ž2 4 x 6 = 3 3 2 ð‘Ž2 x c
  • 30. Atomic Packing Factor (HCP) APF = 6 ð‘¥ 4 3 ð‘¥ 3.14 ð‘¥ ð‘Ÿ3 3 3 2 ð‘Ž2 ð‘¥ ð‘ ð‘Ž = 2ð‘Ÿ ð‘Žð‘›ð‘‘ ð‘ ð‘Ž = 1.633 = 6 ð‘¥ 4 3 ð‘¥ 3.14 ð‘¥ ( ð‘Ž 2 )3 3 3 2 ð‘Ž2 ð‘¥ ð‘ = 12.55ð‘Ž 10.392ð‘ = 1.207 0.612 APF = 0.74 or 74% APF = ð‘𑜠ð‘œð‘“ ð‘Žð‘¡ð‘œð‘šð‘  ð‘ð‘’ð‘Ÿ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™ ð‘¥ ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘’ð‘Žð‘â„Ž ð‘Žð‘¡ð‘œð‘š ð‘‰ð‘œð‘™ð‘¢ð‘šð‘’ ð‘œð‘“ ð‘¢ð‘›ð‘–ð‘¡ ð‘ð‘’ð‘™ð‘™
  • 33. Comparison of FCC, BCC, HCP Crystal Structure Coordination Number Packing Factor Closed Packed Direction BCC FCC HCP 8 12 12 0.68 0.74 0.74 Body Diagonal Face Diagonal Hexagonal Side
  • 34. • An anisotropic material is a material which does not behave the same way in all directions. Take wood for example. Wood is very strong along the grain. Against the grain, however, it will easily break. • A different chemical bonding in all directions is also a condition for anisotropy • Poly Crystal (Property Vary with Direction) Anisotropy
  • 35. Figure 7-1 Anisotropic materials: (a) rolled material, (b) wood, (c) glass-fiber cloth in an epoxy matrix, and (d) a crystal with cubic unit cell.
  • 36. • The opposite of an anisotropic material is an isotropic material. Most metals (steel, aluminum) are isotropic materials. They respond the same way in all directions. • Substances in which measured (physical)properties are independent of the direction of measurement are isotropic. • Ex : Single Crystal ( Properties do not vary with direction) • Real Materials (Isotropic) Isotropy