際際滷

際際滷Share a Scribd company logo
Addition of Matrices
Individual elements are added
Both matrices must be of the same order
If A =
?11 ?12 ?13
?21 ?22 ?23
is a 2 〜 3 matrix
and B =
?11 ?12 ?13
?21 ?22 ?23
is another 2 〜 3 matrix.
Then, A + B =
?11 + ?11 ?12 + ?12 ?13 + ?13
?21 + ?21 ?22 + ?22 ?23 + ?23
i.g. : If A =
1 2 ?4
2 3 7
and B =
4 ?1 1
3 1 0
Then, A + B =
1 + 4 ?1 + 2 ?4 + 1
2 + 3 3 + 1 7 + 0
A + B =
5 1 ?3
5 4 7
Example 6
Given A = 3 1 ?1
2 3 0
and B =
2 5 1
?2 3
1
2
, find A + B
A + B = 3 1 ?1
2 3 0
+
2 5 1
?2 3
1
2
=
3 + 2 1 + 5 ?1 + 1
2 ? 2 3 + 3 0 +
1
2
=
2 + 3 1 + 5 0
0 6
1
2
Multiplication of Matrice by a scalar
If A = [aij] m 〜 n is a matrix and k is a scalar,
then kA = k [aij]m 〜 n = [k (aij)] m 〜 n, that is, (i, j)th element of
kA
is kaij for all possible values of i and j.
Every element is multiplied by the scalar.
Eg: If A =
3 1 1.5
5 7 ?3
2 0 5
, then
3A = 3
3 1 1.5
5 7 ?3
2 0 5
3A =
3 〜 3 3 〜 1 3 〜 1.5
3 〜 5 3 〜 7 3 〜 ?3
3 〜 2 3 〜 0 3 〜 5
=
9 3 4.5
3 5 21 ?9
6 0 15
Multiplication of Matrice by a scalar
Negative of a matrix
Denoted by CA.
We define CA = (-1) A
Eg: A =
3 1
?5 ?
,
then -A = (-1) A = (-1)
3 1
?5 ?
=
?3 ?1
5 ??
Example 7
If A =
1 2 3
2 3 1
and B =
3 ?1 3
?1 0 2
then find 2A C B.
Finding 2A
2A = 2
1 2 3
2 3 1
=
1 〜 2 2 〜 2 2 〜 3
2 〜 2 2 〜 3 1 〜 2
=
2 4 6
4 6 2
Now, finding 2A C B
2A C B =
2 4 6
4 6 2
?
3 ?1 3
?1 0 2
=
2 ? 3 4 ? (?1) 6 ? 3
4 ? (?1) 6 ? 0 2 ? 2
=
?1 4 + 1 3
4 + 1 6 0
=
?1 5 3
5 6 0
Now, finding 2A C B
2A C B =
2 4 6
4 6 2
?
3 ?1 3
?1 0 2
=
2 ? 3 4 ? (?1) 6 ? 3
4 ? (?1) 6 ? 0 2 ? 2
=
?1 4 + 1 3
4 + 1 6 0
=
?1 5 3
5 6 0
Ex 3.2,1
Let A =
2 4
3 2
, B =
1 3
?2 5
, C =
?2 5
3 4
Find each of the following
(i) A + B
A + B =
2 4
3 2
+
1 3
?2 5
=
2 + 1 4 + 3
3 ? 2 2 + 5
=
3 7
1 7
Ex 3.2,1
Let A =
2 4
3 2
, B =
1 3
?2 5
, C =
?2 5
3 4
Find each of the following
(ii) A C B
A C B =
2 4
3 2
?
1 3
?2 5
=
2 ? 1 4 ? 3
3 ? (?2) 2 ? 5
=
1 1
3 + 2 ?3
=
1 1
5 ?3
Ex3.2,1
Let A =
2 4
3 2
, B =
1 3
?2 5
, C =
?2 5
3 4
Find each of the following
(iii)3A C C
Finding 3A
3A = 3
2 4
3 2
=
3 〜 2 3 〜 4
3 〜 3 3 〜 2
=
6 12
9 6
Hence
3A C C =
6 12
9 6
?
?2 5
3 4
=
6 ? (?2) 12 ? 5
9 ? 3 6 ? 4
Hence
3A C C =
6 ? (?2) 12 ? 5
9 ? 3 6 ? 4
=
6 + 2 7
6 2
=
8 7
6 2
Hence
3A C C =
6 12
9 6
-
?2 5
3 4
=
6 ? (?2) 12 ? 5
9 ? 3 6 ? 4
=
6 + 2 7
6 2
=
8 7
6 2
Ex3.2, 2
Compute the following:
(iii)
?1 4 ?6
8 5 16
2 8 5
+
12 7 ?6
8 0 5
3 2 4
?1 4 ?6
8 5 16
2 8 5
+
12 7 ?6
8 0 5
3 2 4
=
?1 + 12 4 + 7 ?6 + 6
8 + 8 5 + 0 16 + 5
2 + 3 8 + 2 5 + 4
=
11 11 0
16 5 21
5 10 9
Ex3.2, 2
Compute the following:
(i)
a b
?b a
+
a b
b a
a b
?b a
+
a b
b a
=
a + a b + b
b + b a + a
=
2a 2b
0 2a
Ex3.2,2
Compute the following:
(ii)
a2 + b2 b2 + c2
a2 + c2 a2 + b2
+
2ab 2bc
?2ac ?2ab
a2 + b2 b2 + c2
a2 + c2 a2 + b2
+
2ab 2bc
?2ac ?2ab
=
a2 + b2 + 2ab b2 + c2 + 2bc
a2 + c2 ? 2ac a2 + b2 ? 2ab
=
a + b 2 b + c 2
a ? c 2 a ? b 2
Using ( a + b)2 = a2 + b2 + 2ab)
& (a C b)2 = a2 + b2 C 2ab
Ex3.2, 2
Compute the following:
(iv)
cos2 x sin2 x
sin2 x cos2 x
+
sin2 x cos2 x
cos2 x sine2 x
cos2 x sin2 x
sin2 x cos2 x
+
sin2 x cos2 x
cos2 x sin2 x
=
cos2 x + sin2 x sin2 x + cos2 x
sin2 x + cos2 x cos2 x + sin2 x
=
1 1
1 1
( sin2 x + cos2 x = 1)
Ex3.2, 5
If A =
2
3
1
5
3
1
3
2
3
4
3
7
3
2
2
3
and B =
2
5
3
5
1
1
5
2
5
4
5
7
5
6
5
2
5
,then compute 3A C 5B
Given A =
2
3
1
5
3
1
3
2
3
4
3
7
3
2
2
3
, B =
2
5
3
5
1
1
5
2
5
4
5
7
5
6
5
2
5
3A C 5B
= 3
2
3
1
5
3
1
3
2
3
4
3
7
3
2
2
3
- 5
2
5
3
5
1
1
5
2
5
4
5
7
5
6
5
2
5
3A C 5B = 3
2
3
1
5
3
1
3
2
3
4
3
7
3
2
2
3
- 5
2
5
3
5
1
1
5
2
5
4
5
7
5
6
5
2
5
=
2
3
〜 3 1 〜 3
5
3
〜 3
1
3
〜 3
2
3
〜 3
4
3
〜 3
7
3
〜 3 2 〜 3
2
3
〜 3
C
2
5
〜 5
3
5
〜 5 1 〜 5
1
5
〜 5
2
5
〜 5
4
5
〜 5
7
5
〜 5
6
5
〜 5
2
5
〜 5
=
2 3 5
1 2 4
7 6 2
C
2 3 5
1 2 4
7 6 2
=
2 ? 2 3 ? 3 5 ? 5
1 ? 1 2 ? 2 4 ? 4
7 ? 7 6 ? 6 2 ? 2
=
0 0 0
0 0 0
0 0 0
Hence, 3A C 5B =
0 0 0
0 0 0
0 0 0
Ex3.2, 11
If x
2
3
+ y
?1
1
=
10
5
, find values of x and y.
x
2
3
+ y
?1
1
=
10
5
2?
3?
+
??
? =
10
5
2? ? ?
3? ? ?
=
10
5
Since the matrices are equal.
corresponding elements are equal
2x ? y = 10
3x + y = 5
´(1)
´(2)
Adding (1) & (2)
(2x C y) + (3x + y) = 10 + 5
2x C y + 3x + y = 15
2x + 3y C y + y = 15
5x + 0 = 15
x =
15
5
x = 3
Putting value of x in (1)
2x C y = 10
2(3) C y = 10
6 C y = 10
C y = 10 C 6
C y = 4
y = C 4
Hence, x = 3 & y = C 3
Ex3.2, 4
If A =
1 2 ?3
5 0 2
1 ?1 1
, B =
3 ?1 2
4 0 5
2 0 3
and , C =
4 1 2
0 3 2
1 ?2 3
then compute (A+B) and (B C C) . Also, verify that
A+(B - C) = (A+B) C C
Calculating A + B
A + B =
1 2 ?3
5 0 2
1 ?1 1
+
3 ?1 2
4 0 5
2 0 3
=
1 + 3 2 ? 1 ?3 + 2
5 + 4 0 + 2 2 + 5
1 + 2 1 + 0 1 + 3
=
4 1 ?1
9 2 7
3 ?1 4
Calculating B C C
B C C =
3 ?1 2
4 2 5
2 0 3
C
4 1 2
0 3 2
1 ?2 3
=
3 ? 4 2 ? 1 ?3 + 2
4 ? 0 0 + 2 2 + 5
2 ? 1 0 ? (?2) 3 ? 3
=
?1 ?2 0
4 ?1 3
1 2 0
We need to verify
A + (B C C) = (A + B) C C
Taking L.H.S
A + (B C C) =
1 2 ?3
5 0 2
1 ?1 1
+
?1 ?2 0
4 ?1 3
1 2 0
A + (B C C ) =
1 2 ?3
5 0 2
1 ?1 1
+
?1 ?2 0
4 ?1 3
1 2 0
=
1 ? 1 2 ? 2 ?3 + 0
5 + 4 0 ? 1 2 + 3
1 + 1 ?1 + 2 1 + 0
=
0 0 ?3
9 ?1 5
2 1 1
Taking R.H.S
(A + B) C C =
4 1 ?1
9 2 7
3 ?1 4
?
4 1 2
0 3 2
1 ?2 3
=
4 ? 4 1 ? 1 ?1 ? 2
9 ? 0 2 ? 3 7 ? 2
3 ? 1 ?1 + 2 4 ? 3
(A + B) C C =
4 ? 4 1 ? 1 ?1 ? 2
9 ? 0 2 ? 3 7 ? 2
3 ? 1 ?1 + 2 4 ? 3
=
0 0 ?3
9 ?1 5
2 1 1
= L.H.S
Hence L.H.S = R.H.S
Hence proved
Ex3.2, 6
Simplify cos θ
cos θ sin θ
?sin θ cos θ
+ sin θ
sin θ ?cos θ
cos θ sin θ
cos θ
cos θ sin θ
?sin θ cos θ
+ sin θ
sin θ ?cos θ
cos θ sin θ
=
cos θ(cos θ) cos θ(sin θ)
cos θ (????θ) cos θ(cos θ)
+
sin θ(sin θ) sin θ(?cos θ)
sin θ(cos θ) sin θ(sin θ)
=
cos2 θ cos θ sin θ
?cos θ sin θ cos2 θ
+
sin2 θ ?cos θ sin θ
sin θ cos θ sin2 θ
=
cos2 θ + sin2 θ sin θ cos θ ? cos θ sin θ
?cos θ sin θ + sin θ cos θ cos2 θ sin2 θ
=
1 0
0 1
(× cos2θ + sin2θ = 1)
Ex3.2, 22
Assume X, Y, Z, W and P are matrices of order 2 〜 n, 3 〜 k, 2 〜
p, n 〜 3 , and p 〜 k respectively.
If n = p, then the order of the matrix 7X C 5Z is
(A)p 〜 2 (B) 2 〜 n (C) n 〜 3 (D) p 〜 n
7X C 5Z
= 7 X 2 〜 ? - 5 Z 2 〜?
This is possible only when
Order of X = Order of Z
2 〜 n = 2 〜 p
Therefore, n = p
So, the matrix 7X C 5Z = 7 X 2 〜 ? - 5 Z 2 〜 ?
Hence, the order of matrix 7X ? 5Z is 2 〜 n.
Hence, correct answer is B
Given order of X is 2 〜 n
and order of Z is 2 〜 p
Example 9,
Find X and Y , if X + Y =
5 2
0 9
and X C Y =
3 6
0 ?1
It is given that
X + Y =
5 2
0 9
X C Y =
3 6
0 ?1
`Adding (1) and (2)
(X + Y) + (X C Y) =
5 2
0 9
+
3 6
0 ?1
X + X + Y C Y =
5 + 3 2 + 6
0 + 0 9 ? ( ?1)
´ (1)
´ (2)
X + X + Y C Y =
5 + 3 2 + 6
0 + 0 9 ? ( ?1)
2X =
8 8
0 8
X =
1
2
8 8
0 8
X =
8
2
8
2
0
8
2
X =
4 4
0 4
Putting X =
4 4
0 4
in (1)
X + Y =
5 2
0 9
Y =
5 2
0 9
C X
Y =
5 2
0 9
-
4 4
0 4
Y =
5 ? 4 2 ? 4
0 ? 0 9 ? 4
Y =
1 ?2
0 5
Hence, X =
4 4
0 4
, Y =
1 ?2
0 5
Ex3.2, 7
Find X and Y, if
(i) X + Y =
7 0
2 5
and X C Y =
3 0
0 3
Let X + Y =
7 0
2 5
X C Y =
3 0
0 3
Adding (1) and (2)
X + Y + X C Y =
7 0
2 5
+
3 0
0 3
X + Y + X C Y =
7 + 3 0 + 0
2 + 0 5 + 3
2x + 0 =
10 0
2 8
´(1)
´(2)
2x + 0 =
10 0
2 8
2X =
10 0
2 8
X =
1
2
10 0
2 8
=
10
2
0
2
2
2
8
2
=
5 0
1 4
Putting value of X in (1)
X + Y =
7 0
2 5
Y =
7 0
2 5
C X
Y =
7 0
2 5
C
5 0
1 4
Y =
7 ? 5 0 ? 0
2 ? 1 5 ? 4
Y =
2 0
1 1
Hence X =
5 0
1 4
& Y =
2 0
1 1
Ex3.2, 7
Find X and Y, if
(ii) 2X + 3Y =
2 3
4 0
and 3X + 2Y =
2 ?2
?1 5
Let 2X + 3Y =
2 3
4 0
3X + 2Y =
2 ?2
?1 5
Multiplying (1) by 3
3 〜 (2X+ 3Y) = 3
2 3
4 0
6X + 9Y =
2 〜 3 3 〜 3
4 〜 3 0 〜 3
6X + 9Y =
6 9
12 0
´(1)
´(2)
´(3)
Multiplying (2) by 2
2 〜 (3X + 2Y) = 2 〜
2 ?2
?1 5
6X + 4Y =
2 〜 2 ?2 〜 2
?1 〜 2 5 〜 2
6X + 4Y =
4 ?4
?2 10
Subtracting (3) from (4),
(6X + 9Y ) C (6X + 4Y) =
6 9
12 0
-
4 ?4
?2 10
6X + 9Y C 6X C 4Y =
4 ? 6 9 ? (?4)
12 ? (?2) 0 ? 10
9Y C 4Y + 6X C 6X =
2 9 + 4
12 + 2 ?10
5Y + 0 =
2 13
14 ?10
´ (4)
5Y + 0 =
2 13
14 ?10
Y =
1
5
2 13
14 ?10
Y =
2
5
13
5
14
5
?
10
5
Putting value of Y in (1)
2X + 3
2
5
13
5
14
5
?2
=
2 3
4 0
2X +
2
5
〜 3
13
5
〜 3
14
5
〜 3 ?2 〜 3
=
2 3
4 0
2X +
2
5
〜 3
13
5
〜 3
14
5
〜 3 ?2 〜 3
=
2 3
4 0
2X +
6
5
39
5
42
5
?6
=
2 3
4 0
2X =
2 3
4 0
?
6
5
?
39
5
42
5
?6
2X =
2 ?
6
5
3 ?
39
5
4 ?
42
5
0 ? (?6)
2X =
2 〜5?6
5
3 〜5?39
5
4 〜5?42
5
6
2X =
2 〜5?6
5
3 〜5?39
5
4 〜5?42
5
6
2X =
10?6
5
15?39
5
20?42
5
6
X =
1
2
4
5
?
?24
5
?22
5
6
X =
4
5
〜
1
2
?24
5
〜
1
2
?22
5
〜
1
2
6 〜
1
2
X =
2
5
?12
5
?11
5
3
Hence, X =
2
5
?12
5
?11
5
3
, Y =
2
5
13
5
14
5
?
10
5
Ex3.2, 8
Find X, if Y =
3 2
1 4
and 2X + Y =
1 0
?3 2
Given 2X + Y =
1 0
?3 2
2X =
1 0
?3 2
C Y
Putting value of Y
2X =
1 0
?3 2
C
3 2
1 4
2X =
1 ? 3 0 ? 2
?3 ? 1 2 ? 4
2X =
?2 ?2
?4 ?2
X =
1
2
?2 ?2
?4 ?2
X =
1
2
?2 ?2
?4 ?2
X =
?2
2
?2
2
?4
2
?2
2
X =
?1 ?1
?2 ?1
Hence, X =
?1 ?1
?2 ?1
Example 8
If A =
8 0
4 ?2
3 6
and B =
2 ?2
4 2
?5 1
then find the matrix X,
such that 2A + 3X = 5B.
Given that 2A + 3X = 5B
Putting values
2
8 0
4 ?2
3 6
+ 3X = 5
2 ?2
4 2
?5 1
8 〜 2 0 〜 2
4 〜 2 ?2 〜 2
3 〜 2 6 〜 2
+ 3X =
2 〜 5 ?2 〜 5
4 〜 5 2 〜 5
?5 〜 5 1 〜 5
16 0
8 ?2
6 12
+ 3X =
10 ?10
20 10
?25 5
16 0
8 ?2
6 12
+ 3X =
10 ?10
20 10
?25 5
3X =
10 ?10
20 10
?25 5
C
16 0
8 ?4
6 12
3X =
10 ? 16 ?10 ? 0
20 ? 8 10 ? (?4)
?25 ? 6 5 ? 12
3X =
?6 ?10
12 14
?31 ?7
X =
1
3
?6 ?10
12 14
?31 ?7
X =
?6
3
?10
3
?12
3
14
3
?31
3
?7
3
X =
?6
3
?10
3
?12
3
14
3
?31
3
?7
3
X =
?2
?10
3
4
14
3
?31
3
?7
3
Hence, X =
?2
?10
3
4
14
3
?31
3
?7
3
Ex3.2,9
Find x and y, if 2
1 3
0 ?
+
? 0
1 2
=
5 6
1 8
Given that
2
1 3
0 ?
+
? 0
1 2
=
5 6
1 8
1 〜 2 3 〜 2
0 〜 2 ? 〜 2
+
? 0
1 2
=
5 6
1 8
2 6
0 2?
+
? 0
1 2
=
5 6
1 8
2 + ? 6 + 0
0 + 1 2? + 2
=
5 6
1 8
Since matrices are equal.
Corresponding elements are equal
Since matrices are equal, corresponding elements are equal
Therefore,
2 + y = 5
2x + 2 = 8
Solving (1)
2 + y = 5
y = 5 C 2
y = 3
Solving (2)
2x + 2 = 8
2x = 8 C 2
2x = 6
x =
6
2
x = 3
´(1)
´(2)
Hence x = 3
& y = 3
Ex 3.2,10
Solve the equation for x, y, z and t, if
2
? ?
? ? + 3
? 0
1 2
= 3
3 5
4 6
2
? ?
? ? + 3
1 ?1
0 2
= 3
3 5
4 6
? 〜 2 ? 〜 2
? 〜 2 ? 〜 2
+
1 〜 3 ?1 〜 3
0 〜 3 2 〜 3
=
3 〜 3 5 〜 3
4 〜 3 6 〜 3
2? 2?
2? 2?
+
3 ?3
0 6
=
9 15
12 18
2? + 3 2? ? 3
2? + 0 2? + 6
=
9 15
12 18
Since matrices are equal.
Corresponding elements are equal
Since matrices are equal, corresponding elements are equal
2x + 3 = 9
2y = 12
2z C 3 = 15
2t + 6 = 18
Solving equation (1)
2x + 3 = 9
2x = 9 C 3
x =
6
2
x = 3
´(1)
´(2)
´(3)
´(4)
Solving equation (2)
2y = 12
y =
12
2
y = 6
Solving equation (3)
2z C 3 = 15
2z = 15 + 3
2z = 18
z =
18
2
x = 9
Solving equation (4)
2t + 6 = 18
2t = 18 C 6
2t = 12
t =
12
2
t = 6
Hence x = 3 , y = 6 , z = 9 & t = 6
Ex3.2,12
Given 3
x z
z w
=
x 6
?1 2w
+
4 x + y
z + w 3
find the values
of x, y, z and w.
3
x z
z w
=
x 6
?1 2w
+
4 x + y
z + w 3
x 〜 3 z 〜 3
z 〜 3 w 〜 3
=
x + 4 6 + x + y
?1 + z + w 2w + 3
3x 3z
3z 3w
=
x + 4 6 + x + y
1 ? z + w 2w + 3
Since matrices are equal.
Corresponding elements are equal
Since matrices are equal, corresponding elements are equal
3x = x + 4
3y = 6 + x + y
3z = 1 C z + w
3w = 2w + 3
Solving equation (1)
3x = x + 4
3x C x = 4
2x = 4
x =
4
2
x = 2
´(1)
´(2)
´(3)
´(4)
Solving equation (2)
3y = 6 + x + y
3y C y = 6 + x
2y = 6 + x
Putting x = 2
2y = 6 + 2
2y = 8
2y =
8
2
y = 4
Solving equation (4)
3w = 2w + 3
3w C 2w = 3
w = 3
Solving equation (3)
3z = C 1 + z + w
3z C z = C 1 + w
2z = C 1 + w
Putting w = 3
2z = C 1 + 3
2z = 2
z =
2
2
z = 1
Hence, x = 2, y = 4 , w = 3 & z = 1
Ex3.2,13
If F (x) =
cos ? ?sin ? 0
sin ? cos ? 0
0 0 1
, Show that F(x) F(y) = F(x + y)
F (x) =
cos ? ?sin ? 0
sin ? cos ? 0
0 0 1
We need to show
F(x) F(y) = F(x + y)
Taking L.H.S.
Finding F(x)
F (x) =
cos ? ?sin ? 0
sin ? cos ? 0
0 0 1
Finding F(y)
Replacing x by y in F(x)
F (y) =
cos ? ?sin ? 0
sin ? cos ? 0
0 0 1
Now,
F(x) F(y)
=
cos ? ?sin ? 0
sin ? cos ? 0
0 0 1
cos ? ?sin ? 0
sin ? cos ? 0
0 0 1
=
cos ? cos ? + ?sin ? sin ? + 0 cos ?(? sin ?) + (? sin ?) cos + 0 0 + 0 + 0 〜 1
?sin ? cos ? + cos ? sin ? + 0 sin ? (? sin ?) + cos ? cos ? + 0 0 + 0 + 0 〜 1
0 〜 cos ? + 0 + sin ? + 0 〜 1 0 〜 (? sin ?) + 0 〜 cos ? + 0 0 + 0 + 1 〜 1
=
cos ? cos ? ?sin ? . sin ? ?cos ? ? sin ? ? sin ? cos ? 0
sin ? cos ? + cos ? sin ? ? sin ? ? sin ? + cos ? cos ? 0
0 0 1
=
cos ? cos ? ?sin ? . sin ? ?cos ? ? sin ? ? sin ? cos ? 0
sin ? cos ? + cos ? sin ? ? sin ? ? sin ? + cos ? cos ? 0
0 0 1
We know that cos x cos y C sin x sin y = cos (x + y)
& sin x cos y + cos x sin y = sin (x + y)
=
cos(? + ?) ?[cos ? sin ? + sin ? cos ?] 0
sin(? + ?) cos ? cos ? ? sin ? sin ? 0
0 0 1
=
cos(? + ?) ? sin(? + ?) 0
sin(? + ?) cos(? + ?) 0
0 0 1
Taking R.H.S
F(x + y)
Replacing x by (x + y) in F(x)
=
cos(? + ?) ? sin(? + ?) 0
sin(? + ?) cos(? + ?) 0
0 0 1
= L.H.S.
Hence proved
Example 10
Find the values of x and y from the following equation:
2
x 5
7 y ? 3
+
3 ?4
1 2
=
7 6
15 14
2
x 5
7 y ? 3
+
3 ?4
1 2
=
7 6
15 14
x 〜 2 5 〜 2
7 〜 2 (y ? 3) 〜 2
+
3 ?4
1 2
=
7 6
15 14
2x 10
14 2? ? 6
+
3 ?4
1 2
=
7 6
15 14
2x + 3 10 ? 4
14 + 1 2? ? 6 + 2
=
7 6
15 14
2x + 3 6
15 2? ? 4
=
7 6
15 14
2x + 3 6
15 2? ? 4
=
7 6
15 14
Since matrices are equal.
Corresponding elements are equal
2x + 3 = 7
& 2y C 4 = 14
Solving (1)
2x = 7 C 3
2x = 4
x =
4
2
x = 2
´(1)
´(2)
Solving (2)
2y C 4 = 14
2y = 14 + 4
2y = 418
y =
18
2
y = 9
Hence x = 2 & y = 9

More Related Content

V2.0

  • 1. Addition of Matrices Individual elements are added Both matrices must be of the same order If A = ?11 ?12 ?13 ?21 ?22 ?23 is a 2 〜 3 matrix and B = ?11 ?12 ?13 ?21 ?22 ?23 is another 2 〜 3 matrix. Then, A + B = ?11 + ?11 ?12 + ?12 ?13 + ?13 ?21 + ?21 ?22 + ?22 ?23 + ?23 i.g. : If A = 1 2 ?4 2 3 7 and B = 4 ?1 1 3 1 0 Then, A + B = 1 + 4 ?1 + 2 ?4 + 1 2 + 3 3 + 1 7 + 0 A + B = 5 1 ?3 5 4 7
  • 2. Example 6 Given A = 3 1 ?1 2 3 0 and B = 2 5 1 ?2 3 1 2 , find A + B A + B = 3 1 ?1 2 3 0 + 2 5 1 ?2 3 1 2 = 3 + 2 1 + 5 ?1 + 1 2 ? 2 3 + 3 0 + 1 2 = 2 + 3 1 + 5 0 0 6 1 2
  • 3. Multiplication of Matrice by a scalar If A = [aij] m 〜 n is a matrix and k is a scalar, then kA = k [aij]m 〜 n = [k (aij)] m 〜 n, that is, (i, j)th element of kA is kaij for all possible values of i and j. Every element is multiplied by the scalar. Eg: If A = 3 1 1.5 5 7 ?3 2 0 5 , then 3A = 3 3 1 1.5 5 7 ?3 2 0 5 3A = 3 〜 3 3 〜 1 3 〜 1.5 3 〜 5 3 〜 7 3 〜 ?3 3 〜 2 3 〜 0 3 〜 5 = 9 3 4.5 3 5 21 ?9 6 0 15
  • 4. Multiplication of Matrice by a scalar Negative of a matrix Denoted by CA. We define CA = (-1) A Eg: A = 3 1 ?5 ? , then -A = (-1) A = (-1) 3 1 ?5 ? = ?3 ?1 5 ??
  • 5. Example 7 If A = 1 2 3 2 3 1 and B = 3 ?1 3 ?1 0 2 then find 2A C B. Finding 2A 2A = 2 1 2 3 2 3 1 = 1 〜 2 2 〜 2 2 〜 3 2 〜 2 2 〜 3 1 〜 2 = 2 4 6 4 6 2 Now, finding 2A C B 2A C B = 2 4 6 4 6 2 ? 3 ?1 3 ?1 0 2 = 2 ? 3 4 ? (?1) 6 ? 3 4 ? (?1) 6 ? 0 2 ? 2 = ?1 4 + 1 3 4 + 1 6 0 = ?1 5 3 5 6 0
  • 6. Now, finding 2A C B 2A C B = 2 4 6 4 6 2 ? 3 ?1 3 ?1 0 2 = 2 ? 3 4 ? (?1) 6 ? 3 4 ? (?1) 6 ? 0 2 ? 2 = ?1 4 + 1 3 4 + 1 6 0 = ?1 5 3 5 6 0
  • 7. Ex 3.2,1 Let A = 2 4 3 2 , B = 1 3 ?2 5 , C = ?2 5 3 4 Find each of the following (i) A + B A + B = 2 4 3 2 + 1 3 ?2 5 = 2 + 1 4 + 3 3 ? 2 2 + 5 = 3 7 1 7
  • 8. Ex 3.2,1 Let A = 2 4 3 2 , B = 1 3 ?2 5 , C = ?2 5 3 4 Find each of the following (ii) A C B A C B = 2 4 3 2 ? 1 3 ?2 5 = 2 ? 1 4 ? 3 3 ? (?2) 2 ? 5 = 1 1 3 + 2 ?3 = 1 1 5 ?3
  • 9. Ex3.2,1 Let A = 2 4 3 2 , B = 1 3 ?2 5 , C = ?2 5 3 4 Find each of the following (iii)3A C C Finding 3A 3A = 3 2 4 3 2 = 3 〜 2 3 〜 4 3 〜 3 3 〜 2 = 6 12 9 6 Hence 3A C C = 6 12 9 6 ? ?2 5 3 4 = 6 ? (?2) 12 ? 5 9 ? 3 6 ? 4
  • 10. Hence 3A C C = 6 ? (?2) 12 ? 5 9 ? 3 6 ? 4 = 6 + 2 7 6 2 = 8 7 6 2
  • 11. Hence 3A C C = 6 12 9 6 - ?2 5 3 4 = 6 ? (?2) 12 ? 5 9 ? 3 6 ? 4 = 6 + 2 7 6 2 = 8 7 6 2
  • 12. Ex3.2, 2 Compute the following: (iii) ?1 4 ?6 8 5 16 2 8 5 + 12 7 ?6 8 0 5 3 2 4 ?1 4 ?6 8 5 16 2 8 5 + 12 7 ?6 8 0 5 3 2 4 = ?1 + 12 4 + 7 ?6 + 6 8 + 8 5 + 0 16 + 5 2 + 3 8 + 2 5 + 4 = 11 11 0 16 5 21 5 10 9
  • 13. Ex3.2, 2 Compute the following: (i) a b ?b a + a b b a a b ?b a + a b b a = a + a b + b b + b a + a = 2a 2b 0 2a
  • 14. Ex3.2,2 Compute the following: (ii) a2 + b2 b2 + c2 a2 + c2 a2 + b2 + 2ab 2bc ?2ac ?2ab a2 + b2 b2 + c2 a2 + c2 a2 + b2 + 2ab 2bc ?2ac ?2ab = a2 + b2 + 2ab b2 + c2 + 2bc a2 + c2 ? 2ac a2 + b2 ? 2ab = a + b 2 b + c 2 a ? c 2 a ? b 2 Using ( a + b)2 = a2 + b2 + 2ab) & (a C b)2 = a2 + b2 C 2ab
  • 15. Ex3.2, 2 Compute the following: (iv) cos2 x sin2 x sin2 x cos2 x + sin2 x cos2 x cos2 x sine2 x cos2 x sin2 x sin2 x cos2 x + sin2 x cos2 x cos2 x sin2 x = cos2 x + sin2 x sin2 x + cos2 x sin2 x + cos2 x cos2 x + sin2 x = 1 1 1 1 ( sin2 x + cos2 x = 1)
  • 16. Ex3.2, 5 If A = 2 3 1 5 3 1 3 2 3 4 3 7 3 2 2 3 and B = 2 5 3 5 1 1 5 2 5 4 5 7 5 6 5 2 5 ,then compute 3A C 5B Given A = 2 3 1 5 3 1 3 2 3 4 3 7 3 2 2 3 , B = 2 5 3 5 1 1 5 2 5 4 5 7 5 6 5 2 5 3A C 5B = 3 2 3 1 5 3 1 3 2 3 4 3 7 3 2 2 3 - 5 2 5 3 5 1 1 5 2 5 4 5 7 5 6 5 2 5
  • 17. 3A C 5B = 3 2 3 1 5 3 1 3 2 3 4 3 7 3 2 2 3 - 5 2 5 3 5 1 1 5 2 5 4 5 7 5 6 5 2 5 = 2 3 〜 3 1 〜 3 5 3 〜 3 1 3 〜 3 2 3 〜 3 4 3 〜 3 7 3 〜 3 2 〜 3 2 3 〜 3 C 2 5 〜 5 3 5 〜 5 1 〜 5 1 5 〜 5 2 5 〜 5 4 5 〜 5 7 5 〜 5 6 5 〜 5 2 5 〜 5 = 2 3 5 1 2 4 7 6 2 C 2 3 5 1 2 4 7 6 2 = 2 ? 2 3 ? 3 5 ? 5 1 ? 1 2 ? 2 4 ? 4 7 ? 7 6 ? 6 2 ? 2 = 0 0 0 0 0 0 0 0 0
  • 18. Hence, 3A C 5B = 0 0 0 0 0 0 0 0 0
  • 19. Ex3.2, 11 If x 2 3 + y ?1 1 = 10 5 , find values of x and y. x 2 3 + y ?1 1 = 10 5 2? 3? + ?? ? = 10 5 2? ? ? 3? ? ? = 10 5 Since the matrices are equal. corresponding elements are equal 2x ? y = 10 3x + y = 5 ´(1) ´(2)
  • 20. Adding (1) & (2) (2x C y) + (3x + y) = 10 + 5 2x C y + 3x + y = 15 2x + 3y C y + y = 15 5x + 0 = 15 x = 15 5 x = 3 Putting value of x in (1) 2x C y = 10 2(3) C y = 10 6 C y = 10 C y = 10 C 6 C y = 4 y = C 4 Hence, x = 3 & y = C 3
  • 21. Ex3.2, 4 If A = 1 2 ?3 5 0 2 1 ?1 1 , B = 3 ?1 2 4 0 5 2 0 3 and , C = 4 1 2 0 3 2 1 ?2 3 then compute (A+B) and (B C C) . Also, verify that A+(B - C) = (A+B) C C Calculating A + B A + B = 1 2 ?3 5 0 2 1 ?1 1 + 3 ?1 2 4 0 5 2 0 3 = 1 + 3 2 ? 1 ?3 + 2 5 + 4 0 + 2 2 + 5 1 + 2 1 + 0 1 + 3 = 4 1 ?1 9 2 7 3 ?1 4
  • 22. Calculating B C C B C C = 3 ?1 2 4 2 5 2 0 3 C 4 1 2 0 3 2 1 ?2 3 = 3 ? 4 2 ? 1 ?3 + 2 4 ? 0 0 + 2 2 + 5 2 ? 1 0 ? (?2) 3 ? 3 = ?1 ?2 0 4 ?1 3 1 2 0 We need to verify A + (B C C) = (A + B) C C Taking L.H.S A + (B C C) = 1 2 ?3 5 0 2 1 ?1 1 + ?1 ?2 0 4 ?1 3 1 2 0
  • 23. A + (B C C ) = 1 2 ?3 5 0 2 1 ?1 1 + ?1 ?2 0 4 ?1 3 1 2 0 = 1 ? 1 2 ? 2 ?3 + 0 5 + 4 0 ? 1 2 + 3 1 + 1 ?1 + 2 1 + 0 = 0 0 ?3 9 ?1 5 2 1 1 Taking R.H.S (A + B) C C = 4 1 ?1 9 2 7 3 ?1 4 ? 4 1 2 0 3 2 1 ?2 3 = 4 ? 4 1 ? 1 ?1 ? 2 9 ? 0 2 ? 3 7 ? 2 3 ? 1 ?1 + 2 4 ? 3
  • 24. (A + B) C C = 4 ? 4 1 ? 1 ?1 ? 2 9 ? 0 2 ? 3 7 ? 2 3 ? 1 ?1 + 2 4 ? 3 = 0 0 ?3 9 ?1 5 2 1 1 = L.H.S Hence L.H.S = R.H.S Hence proved
  • 25. Ex3.2, 6 Simplify cos θ cos θ sin θ ?sin θ cos θ + sin θ sin θ ?cos θ cos θ sin θ cos θ cos θ sin θ ?sin θ cos θ + sin θ sin θ ?cos θ cos θ sin θ = cos θ(cos θ) cos θ(sin θ) cos θ (????θ) cos θ(cos θ) + sin θ(sin θ) sin θ(?cos θ) sin θ(cos θ) sin θ(sin θ) = cos2 θ cos θ sin θ ?cos θ sin θ cos2 θ + sin2 θ ?cos θ sin θ sin θ cos θ sin2 θ = cos2 θ + sin2 θ sin θ cos θ ? cos θ sin θ ?cos θ sin θ + sin θ cos θ cos2 θ sin2 θ = 1 0 0 1 (× cos2θ + sin2θ = 1)
  • 26. Ex3.2, 22 Assume X, Y, Z, W and P are matrices of order 2 〜 n, 3 〜 k, 2 〜 p, n 〜 3 , and p 〜 k respectively. If n = p, then the order of the matrix 7X C 5Z is (A)p 〜 2 (B) 2 〜 n (C) n 〜 3 (D) p 〜 n 7X C 5Z = 7 X 2 〜 ? - 5 Z 2 〜? This is possible only when Order of X = Order of Z 2 〜 n = 2 〜 p Therefore, n = p So, the matrix 7X C 5Z = 7 X 2 〜 ? - 5 Z 2 〜 ? Hence, the order of matrix 7X ? 5Z is 2 〜 n. Hence, correct answer is B Given order of X is 2 〜 n and order of Z is 2 〜 p
  • 27. Example 9, Find X and Y , if X + Y = 5 2 0 9 and X C Y = 3 6 0 ?1 It is given that X + Y = 5 2 0 9 X C Y = 3 6 0 ?1 `Adding (1) and (2) (X + Y) + (X C Y) = 5 2 0 9 + 3 6 0 ?1 X + X + Y C Y = 5 + 3 2 + 6 0 + 0 9 ? ( ?1) ´ (1) ´ (2)
  • 28. X + X + Y C Y = 5 + 3 2 + 6 0 + 0 9 ? ( ?1) 2X = 8 8 0 8 X = 1 2 8 8 0 8 X = 8 2 8 2 0 8 2 X = 4 4 0 4
  • 29. Putting X = 4 4 0 4 in (1) X + Y = 5 2 0 9 Y = 5 2 0 9 C X Y = 5 2 0 9 - 4 4 0 4 Y = 5 ? 4 2 ? 4 0 ? 0 9 ? 4 Y = 1 ?2 0 5 Hence, X = 4 4 0 4 , Y = 1 ?2 0 5
  • 30. Ex3.2, 7 Find X and Y, if (i) X + Y = 7 0 2 5 and X C Y = 3 0 0 3 Let X + Y = 7 0 2 5 X C Y = 3 0 0 3 Adding (1) and (2) X + Y + X C Y = 7 0 2 5 + 3 0 0 3 X + Y + X C Y = 7 + 3 0 + 0 2 + 0 5 + 3 2x + 0 = 10 0 2 8 ´(1) ´(2)
  • 31. 2x + 0 = 10 0 2 8 2X = 10 0 2 8 X = 1 2 10 0 2 8 = 10 2 0 2 2 2 8 2 = 5 0 1 4
  • 32. Putting value of X in (1) X + Y = 7 0 2 5 Y = 7 0 2 5 C X Y = 7 0 2 5 C 5 0 1 4 Y = 7 ? 5 0 ? 0 2 ? 1 5 ? 4 Y = 2 0 1 1 Hence X = 5 0 1 4 & Y = 2 0 1 1
  • 33. Ex3.2, 7 Find X and Y, if (ii) 2X + 3Y = 2 3 4 0 and 3X + 2Y = 2 ?2 ?1 5 Let 2X + 3Y = 2 3 4 0 3X + 2Y = 2 ?2 ?1 5 Multiplying (1) by 3 3 〜 (2X+ 3Y) = 3 2 3 4 0 6X + 9Y = 2 〜 3 3 〜 3 4 〜 3 0 〜 3 6X + 9Y = 6 9 12 0 ´(1) ´(2) ´(3)
  • 34. Multiplying (2) by 2 2 〜 (3X + 2Y) = 2 〜 2 ?2 ?1 5 6X + 4Y = 2 〜 2 ?2 〜 2 ?1 〜 2 5 〜 2 6X + 4Y = 4 ?4 ?2 10 Subtracting (3) from (4), (6X + 9Y ) C (6X + 4Y) = 6 9 12 0 - 4 ?4 ?2 10 6X + 9Y C 6X C 4Y = 4 ? 6 9 ? (?4) 12 ? (?2) 0 ? 10 9Y C 4Y + 6X C 6X = 2 9 + 4 12 + 2 ?10 5Y + 0 = 2 13 14 ?10 ´ (4)
  • 35. 5Y + 0 = 2 13 14 ?10 Y = 1 5 2 13 14 ?10 Y = 2 5 13 5 14 5 ? 10 5 Putting value of Y in (1) 2X + 3 2 5 13 5 14 5 ?2 = 2 3 4 0 2X + 2 5 〜 3 13 5 〜 3 14 5 〜 3 ?2 〜 3 = 2 3 4 0
  • 36. 2X + 2 5 〜 3 13 5 〜 3 14 5 〜 3 ?2 〜 3 = 2 3 4 0 2X + 6 5 39 5 42 5 ?6 = 2 3 4 0 2X = 2 3 4 0 ? 6 5 ? 39 5 42 5 ?6 2X = 2 ? 6 5 3 ? 39 5 4 ? 42 5 0 ? (?6) 2X = 2 〜5?6 5 3 〜5?39 5 4 〜5?42 5 6
  • 37. 2X = 2 〜5?6 5 3 〜5?39 5 4 〜5?42 5 6 2X = 10?6 5 15?39 5 20?42 5 6 X = 1 2 4 5 ? ?24 5 ?22 5 6 X = 4 5 〜 1 2 ?24 5 〜 1 2 ?22 5 〜 1 2 6 〜 1 2 X = 2 5 ?12 5 ?11 5 3
  • 38. Hence, X = 2 5 ?12 5 ?11 5 3 , Y = 2 5 13 5 14 5 ? 10 5
  • 39. Ex3.2, 8 Find X, if Y = 3 2 1 4 and 2X + Y = 1 0 ?3 2 Given 2X + Y = 1 0 ?3 2 2X = 1 0 ?3 2 C Y Putting value of Y 2X = 1 0 ?3 2 C 3 2 1 4 2X = 1 ? 3 0 ? 2 ?3 ? 1 2 ? 4 2X = ?2 ?2 ?4 ?2 X = 1 2 ?2 ?2 ?4 ?2
  • 40. X = 1 2 ?2 ?2 ?4 ?2 X = ?2 2 ?2 2 ?4 2 ?2 2 X = ?1 ?1 ?2 ?1 Hence, X = ?1 ?1 ?2 ?1
  • 41. Example 8 If A = 8 0 4 ?2 3 6 and B = 2 ?2 4 2 ?5 1 then find the matrix X, such that 2A + 3X = 5B. Given that 2A + 3X = 5B Putting values 2 8 0 4 ?2 3 6 + 3X = 5 2 ?2 4 2 ?5 1 8 〜 2 0 〜 2 4 〜 2 ?2 〜 2 3 〜 2 6 〜 2 + 3X = 2 〜 5 ?2 〜 5 4 〜 5 2 〜 5 ?5 〜 5 1 〜 5 16 0 8 ?2 6 12 + 3X = 10 ?10 20 10 ?25 5
  • 42. 16 0 8 ?2 6 12 + 3X = 10 ?10 20 10 ?25 5 3X = 10 ?10 20 10 ?25 5 C 16 0 8 ?4 6 12 3X = 10 ? 16 ?10 ? 0 20 ? 8 10 ? (?4) ?25 ? 6 5 ? 12 3X = ?6 ?10 12 14 ?31 ?7 X = 1 3 ?6 ?10 12 14 ?31 ?7 X = ?6 3 ?10 3 ?12 3 14 3 ?31 3 ?7 3
  • 44. Ex3.2,9 Find x and y, if 2 1 3 0 ? + ? 0 1 2 = 5 6 1 8 Given that 2 1 3 0 ? + ? 0 1 2 = 5 6 1 8 1 〜 2 3 〜 2 0 〜 2 ? 〜 2 + ? 0 1 2 = 5 6 1 8 2 6 0 2? + ? 0 1 2 = 5 6 1 8 2 + ? 6 + 0 0 + 1 2? + 2 = 5 6 1 8 Since matrices are equal. Corresponding elements are equal
  • 45. Since matrices are equal, corresponding elements are equal Therefore, 2 + y = 5 2x + 2 = 8 Solving (1) 2 + y = 5 y = 5 C 2 y = 3 Solving (2) 2x + 2 = 8 2x = 8 C 2 2x = 6 x = 6 2 x = 3 ´(1) ´(2)
  • 46. Hence x = 3 & y = 3
  • 47. Ex 3.2,10 Solve the equation for x, y, z and t, if 2 ? ? ? ? + 3 ? 0 1 2 = 3 3 5 4 6 2 ? ? ? ? + 3 1 ?1 0 2 = 3 3 5 4 6 ? 〜 2 ? 〜 2 ? 〜 2 ? 〜 2 + 1 〜 3 ?1 〜 3 0 〜 3 2 〜 3 = 3 〜 3 5 〜 3 4 〜 3 6 〜 3 2? 2? 2? 2? + 3 ?3 0 6 = 9 15 12 18 2? + 3 2? ? 3 2? + 0 2? + 6 = 9 15 12 18 Since matrices are equal. Corresponding elements are equal
  • 48. Since matrices are equal, corresponding elements are equal 2x + 3 = 9 2y = 12 2z C 3 = 15 2t + 6 = 18 Solving equation (1) 2x + 3 = 9 2x = 9 C 3 x = 6 2 x = 3 ´(1) ´(2) ´(3) ´(4)
  • 49. Solving equation (2) 2y = 12 y = 12 2 y = 6 Solving equation (3) 2z C 3 = 15 2z = 15 + 3 2z = 18 z = 18 2 x = 9
  • 50. Solving equation (4) 2t + 6 = 18 2t = 18 C 6 2t = 12 t = 12 2 t = 6 Hence x = 3 , y = 6 , z = 9 & t = 6
  • 51. Ex3.2,12 Given 3 x z z w = x 6 ?1 2w + 4 x + y z + w 3 find the values of x, y, z and w. 3 x z z w = x 6 ?1 2w + 4 x + y z + w 3 x 〜 3 z 〜 3 z 〜 3 w 〜 3 = x + 4 6 + x + y ?1 + z + w 2w + 3 3x 3z 3z 3w = x + 4 6 + x + y 1 ? z + w 2w + 3 Since matrices are equal. Corresponding elements are equal
  • 52. Since matrices are equal, corresponding elements are equal 3x = x + 4 3y = 6 + x + y 3z = 1 C z + w 3w = 2w + 3 Solving equation (1) 3x = x + 4 3x C x = 4 2x = 4 x = 4 2 x = 2 ´(1) ´(2) ´(3) ´(4)
  • 53. Solving equation (2) 3y = 6 + x + y 3y C y = 6 + x 2y = 6 + x Putting x = 2 2y = 6 + 2 2y = 8 2y = 8 2 y = 4
  • 54. Solving equation (4) 3w = 2w + 3 3w C 2w = 3 w = 3 Solving equation (3) 3z = C 1 + z + w 3z C z = C 1 + w 2z = C 1 + w Putting w = 3 2z = C 1 + 3 2z = 2 z = 2 2 z = 1 Hence, x = 2, y = 4 , w = 3 & z = 1
  • 55. Ex3.2,13 If F (x) = cos ? ?sin ? 0 sin ? cos ? 0 0 0 1 , Show that F(x) F(y) = F(x + y) F (x) = cos ? ?sin ? 0 sin ? cos ? 0 0 0 1 We need to show F(x) F(y) = F(x + y) Taking L.H.S. Finding F(x) F (x) = cos ? ?sin ? 0 sin ? cos ? 0 0 0 1
  • 56. Finding F(y) Replacing x by y in F(x) F (y) = cos ? ?sin ? 0 sin ? cos ? 0 0 0 1 Now, F(x) F(y) = cos ? ?sin ? 0 sin ? cos ? 0 0 0 1 cos ? ?sin ? 0 sin ? cos ? 0 0 0 1 = cos ? cos ? + ?sin ? sin ? + 0 cos ?(? sin ?) + (? sin ?) cos + 0 0 + 0 + 0 〜 1 ?sin ? cos ? + cos ? sin ? + 0 sin ? (? sin ?) + cos ? cos ? + 0 0 + 0 + 0 〜 1 0 〜 cos ? + 0 + sin ? + 0 〜 1 0 〜 (? sin ?) + 0 〜 cos ? + 0 0 + 0 + 1 〜 1 = cos ? cos ? ?sin ? . sin ? ?cos ? ? sin ? ? sin ? cos ? 0 sin ? cos ? + cos ? sin ? ? sin ? ? sin ? + cos ? cos ? 0 0 0 1
  • 57. = cos ? cos ? ?sin ? . sin ? ?cos ? ? sin ? ? sin ? cos ? 0 sin ? cos ? + cos ? sin ? ? sin ? ? sin ? + cos ? cos ? 0 0 0 1 We know that cos x cos y C sin x sin y = cos (x + y) & sin x cos y + cos x sin y = sin (x + y) = cos(? + ?) ?[cos ? sin ? + sin ? cos ?] 0 sin(? + ?) cos ? cos ? ? sin ? sin ? 0 0 0 1 = cos(? + ?) ? sin(? + ?) 0 sin(? + ?) cos(? + ?) 0 0 0 1
  • 58. Taking R.H.S F(x + y) Replacing x by (x + y) in F(x) = cos(? + ?) ? sin(? + ?) 0 sin(? + ?) cos(? + ?) 0 0 0 1 = L.H.S. Hence proved
  • 59. Example 10 Find the values of x and y from the following equation: 2 x 5 7 y ? 3 + 3 ?4 1 2 = 7 6 15 14 2 x 5 7 y ? 3 + 3 ?4 1 2 = 7 6 15 14 x 〜 2 5 〜 2 7 〜 2 (y ? 3) 〜 2 + 3 ?4 1 2 = 7 6 15 14 2x 10 14 2? ? 6 + 3 ?4 1 2 = 7 6 15 14 2x + 3 10 ? 4 14 + 1 2? ? 6 + 2 = 7 6 15 14 2x + 3 6 15 2? ? 4 = 7 6 15 14
  • 60. 2x + 3 6 15 2? ? 4 = 7 6 15 14 Since matrices are equal. Corresponding elements are equal 2x + 3 = 7 & 2y C 4 = 14 Solving (1) 2x = 7 C 3 2x = 4 x = 4 2 x = 2 ´(1) ´(2)
  • 61. Solving (2) 2y C 4 = 14 2y = 14 + 4 2y = 418 y = 18 2 y = 9 Hence x = 2 & y = 9