ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Model Deployment
Alexey Grigorev
Principal Data Scientist ¡ª OLX Group
Founder ¡ª DataTalks.Club
2010
2012
2015
2018
mlbookcamp.com
Plan
¡ñ Different options to deploy a model (Lambda, Kubernetes, SageMaker)
¡ñ Kubernetes 101
¡ñ Deploying an XGB model with Flask and Kubernetes
¡ñ Deploying a Keras model with TF-Serving and Kubernetes
¡ñ Deploying a Keras model with Kubeflow
Ways to deploy a model
¡ñ Flask + AWS Elastic Beanstalk
¡ñ Serverless (AWS Lambda)
¡ñ Kubernetes (EKS)
¡ñ Kubeflow (EKS)
¡ñ AWS SageMaker
¡ñ ...
(or their alternatives in other cloud providers)
{
"tshirt": 0.9993,
"pants": 0.0005,
"shoes": 0.00004
}
AWS Lambda
Kubernetes
Ingress
Client
Node1
Node2
Pod A
Pod B Pod C
Pod D
Pod E
Pod F
Service
1
Service
2
Deployment 1
Deployment 2
Kubernetes Cluster
Kubeflow / KFServing
Ingress
Client
Node1
Node2
Pod A
Pod B Pod C
Pod D
Pod E
Pod F
Service
1
Service
2
Deployment 1
Deployment 2
Kubernetes Cluster
InferenceService
SageMaker
Client
Model
Endpoint
AWS SageMaker
SageMaker
AWS
Lambda vs SageMaker vs Kubernetes
¡ñ Lambda
¡ð Cheap for small load
¡ð Easy to manage
¡ð Not always transparent
Lambda vs SageMaker vs Kubernetes
¡ñ Lambda
¡ð Cheap for small load
¡ð Easy to manage
¡ð Not always transparent
¡ñ SageMaker (serving)
¡ð Easy to use/manage
¡ð Needs wrappers
¡ð Not always transparent
¡ð Expensive
Lambda vs SageMaker vs Kubernetes
¡ñ Lambda
¡ð Cheap for small load
¡ð Easy to manage
¡ð Not always transparent
¡ñ SageMaker (serving)
¡ð Easy to use/manage
¡ð Needs wrappers
¡ð Not always transparent
¡ð Expensive
¡ñ Kubernetes
¡ð Complex (for me)
¡ð More flexible
¡ð Cloud-agnostic *
¡ð Requires support
¡ð Cheaper for high load
* sort of
Kubernetes 101
Kubernetes glossary
¡ñ Pod ~ one instance of your service
¡ñ Deployment - a bunch of pods
¡ñ HPA - horizontal pod autoscaler
¡ñ Node - a server (e.g. EC2 instance)
¡ñ Service - an interface to the deployment
¡ñ Ingress - an interface to the cluster
Kubernetes in one picture
Deploying a Flask App
import xgboost as xgb
# load the model from the pickle file
@app.route('/predict', methods=['POST'])
def predict():
data = request.get_json()
result = apply_model(data)
return jsonify(result)
if __name__ == "__main__":
app.run(debug=True, host='0.0.0.0', port=9696)
FROM python:3.7.5-slim
RUN pip install flask gunicorn xgboost
COPY "model.py" "model.py"
EXPOSE 9696
ENTRYPOINT ["gunicorn", "--bind", "0.0.0.0:9696", "model:app"]
apiVersion: apps/v1
kind: Deployment
metadata:
name: xgb-model
labels:
app: xgb-model
spec:
replicas: 1
selector:
matchLabels:
app: xgb-model
template:
metadata:
labels:
app: xgb-model
spec:
containers:
- name: xgb-model
image: XXXXXXXXXXXX.dkr.ecr.eu-west-1.amazonaws.com/xgb-model:v100500
ports:
- containerPort: 9696
env:
- name: MODEL_PATH
value: "s3://models-bucket-pickle/xgboost.bin"
apiVersion: v1
kind: Service
metadata:
name: xgb-model
spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 9696
protocol: TCP
name: http
selector:
app: xgb-model
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
Deploying a Keras Model
?
?
H5
saved_model
import tensorflow as tf
from tensorflow import keras
model = keras.models.load_model('keras-model.h5')
tf.saved_model.save(model, 'tf-model')
$ ls -lhR
.:
total 3,1M
4,0K assets
3,1M saved_model.pb
4,0K variables
./assets:
total 0
./variables:
total 83M
83M variables.data-00000-of-00001
15K variables.index
saved_model_cli show --dir tf-model --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
...
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input_8'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 299, 299, 3)
name: serving_default_input_8:0
The given SavedModel SignatureDef contains the following output(s):
outputs['dense_7'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 10)
name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict
docker run -it --rm 
-p 8500:8500 
-v "$(pwd)/tf-model:/models/tf-model/1" 
-e MODEL_NAME=tf-model 
tensorflow/serving:2.3.0
2021-09-07 21:03:58.579046: I tensorflow_serving/model_servers/server.cc:367]
Running gRPC ModelServer at 0.0.0.0:8500 ...
[evhttp_server.cc : 238] NET_LOG: Entering the event loop ...
2021-09-07 21:03:58.582097: I tensorflow_serving/model_servers/server.cc:387]
Exporting HTTP/REST API at:localhost:8501 ...
pip install grpcio==1.32.0 
tensorflow-serving-api==2.3.0
https://github.com/alexeygrigorev/mlbookcamp-code/blob/master/chapter-09-kubernetes/09-image-preparation.ipynb
def np_to_protobuf(data):
return tf.make_tensor_proto(data, shape=data.shape)
pb_request = predict_pb2.PredictRequest()
pb_request.model_spec.name = 'tf-model'
pb_request.model_spec.signature_name = 'serving_default'
pb_request.inputs['input_8'].CopyFrom(np_to_protobuf(X))
pb_result = stub.Predict(pb_request, timeout=20.0)
pred = pb_result.outputs['dense_7'].float_val
Gateway
(Resize and
process image)
Flask
Model
(Make predictions)
TF-Serving
Pants
Raw
predictions
Pre-processed
image
Not so fast
def np_to_protobuf(data):
return tf.make_tensor_proto(data, shape=data.shape)
pb_request = predict_pb2.PredictRequest()
pb_request.model_spec.name = 'tf-model'
pb_request.model_spec.signature_name = 'serving_default'
pb_request.inputs['input_8'].CopyFrom(np_to_protobuf(X))
pb_result = stub.Predict(pb_request, timeout=20.0)
pred = pb_result.outputs['dense_7'].float_val
2,0 GB dependency?
Get only the things you need!
https://github.com/alexeygrigorev/tensorflow-protobuf
from tensorflow.keras.applications.xception import preprocess_input
https://github.com/alexeygrigorev/keras-image-helper
from keras_image_helper import create_preprocessor
preprocessor = create_preprocessor('xception', target_size=(299, 299))
url = 'http://bit.ly/mlbookcamp-pants'
X = preprocessor.from_url(url)
Next steps...
¡ñ Bake in the model into the TF-serving image
¡ñ Wrap the gRPC calls in a Flask app for the Gateway
¡ñ Write a Dockerfile for the Gateway
¡ñ Publish the images to ERC
Okay!
We¡¯re ready to deploy to K8S
apiVersion: apps/v1
kind: Deployment
metadata:
name: tf-serving-model
labels:
app: tf-serving-model
spec:
replicas: 1
selector:
matchLabels:
app: tf-serving-model
template:
metadata:
labels:
app: tf-serving-model
spec:
containers:
- name: tf-serving-model
image: X.dkr.ecr.eu-west-1.amazonaws.com/model-serving:tf-serving-model
ports:
- containerPort: 8500
apiVersion: v1
kind: Service
metadata:
name: tf-serving-model
labels:
app: tf-serving-model
spec:
ports:
- port: 8500
targetPort: 8500
protocol: TCP
name: http
selector:
app: tf-serving-model
kubectl apply -f tf-serving-deployment.yaml
kubectl apply -f tf-serving-service.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: serving-gateway
labels:
app: serving-gateway
spec:
replicas: 1
selector:
matchLabels:
app: serving-gateway
template:
metadata:
labels:
app: serving-gateway
spec:
containers:
- name: serving-gateway
image: X.dkr.ecr.eu-west-1.amazonaws.com/model-serving:serving-gateway
ports:
- containerPort: 9696
env:
- name: TF_SERVING_HOST
value: "tf-serving-model.default.svc.cluster.local:8500"
apiVersion: v1
kind: Service
metadata:
name: serving-gateway
spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 9696
protocol: TCP
name: http
selector:
app: serving-gateway
kubectl apply -f gateway-deployment.yaml
kubectl apply -f gateway-service.yaml
gRPC load balancing
https://kubernetes.io/blog/2018/11/07/grpc-load-balancing-on-kubernetes-without-tears/
Deploying deep learning models with Kubernetes and Kubeflow
Kubeflow / KFServing
Kubeflow
¡ñ Open-source ML platform with wany services (notebooks, pipelines, serving)
¡ñ KFServing makes it easier to deploy models compared to plain Kubernetes
Kubeflow / KFServing
Ingress
Client
Node1
Node2
Pod A
Pod B Pod C
Pod D
Pod E
Pod F
Service
1
Service
2
Deployment 1
Deployment 2
Kubernetes Cluster
InferenceService
Installing
https://mlbookcamp.com/article/kfserving-eks-install
git clone git@github.com:alexeygrigorev/kubeflow-deep-learning.git
cd kubeflow-deep-learning/install
./install.sh
Next...
¡ñ Upload the saved_model to S3
¡ñ Allow KFServing to access S3
https://mlbookcamp.com/article/kfserving-eks-install
apiVersion: "serving.kubeflow.org/v1beta1"
kind: "InferenceService"
metadata:
name: "tf-model"
spec:
default:
predictor:
serviceAccountName: sa
tensorflow:
storageUri: "s3://models-bucket-tf/tf-model"
kubectl apply -f tf-inference-service.yaml
$ kubectl get inferenceservice
NAME URL
flowers-sample http://tf-model.default.kubeflow.mlbookcamp.com/v1/models/tf-model ...
url = f'https://{model_url}:predict'
data = {
"instances": X.tolist()
}
resp = requests.post(url, json=data)
results = resp.json()
Pre-processing
(resize/process
images)
Post-processing
(transform
predictions)
Transformer
Model
(Make predictions)
KFServing
Pants
Raw
predictions
Pre-processed
image
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "tf-model"
spec:
default:
predictor:
serviceAccountName: sa
tensorflow:
storageUri: "s3://models-bucket-tf/tf-model"
transformer:
custom:
container:
image: "agrigorev/kfserving-keras-transformer:0.0.1"
name: user-container
env:
- name: MODEL_INPUT_SIZE
value: "299,299"
- name: KERAS_MODEL_NAME
value: "xception"
- name: MODEL_LABELS
value: "dress,hat,longsleeve,outwear,pants,shirt,shoes,shorts,skirt,t-shirt"
https://github.com/alexeygrigorev/kfserving-keras-transformer
url = f'https://{model_url}:predict'
data = {
"instances": [
{"url": "http://bit.ly/mlbookcamp-pants"},
]
}
resp = requests.post(url, json=data)
results = resp.json()
What¡¯s the catch?
¡ñ Kubeflow runs on Kubernetes
¡ñ Not easy to run the whole thing locally
¡ñ Not easy to debug
¡ñ Istio
Summary
¡ñ AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
Summary
¡ñ AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
¡ñ Deploying models with Kubernetes: deployment + service
Summary
¡ñ AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
¡ñ Deploying models with Kubernetes: deployment + service
¡ñ Deploying Keras models: TF-Serving + Gateway (over gRPC)
Summary
¡ñ AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
¡ñ Deploying models with Kubernetes: deployment + service
¡ñ Deploying Keras models: TF-Serving + Gateway (over gRPC)
¡ñ KFServing: transformers + model
Summary
¡ñ AWS SageMaker vs AWS Lambda vs Kubernetes vs Kubeflow
¡ñ Deploying models with Kubernetes: deployment + service
¡ñ Deploying Keras models: TF-Serving + Gateway (over gRPC)
¡ñ KFServing: transformers + model
¡ñ No size fits all
mlbookcamp.com
¡ñ Learn Machine Learning by doing
projects
¡ñ http://bit.ly/mlbookcamp
¡ñ Get 40% off with code ¡°grigorevpc¡±
Machine Learning
Bookcamp
mlzoomcamp.com
Learn Machine Learning Engineering in 4
months
Machine Learning
Zoomcamp
Zoom
@Al_Grigor
agrigorev
DataTalks.Club
Ad

Recommended

Automated Testing for Terraform, Docker, Packer, Kubernetes, and More
Automated Testing for Terraform, Docker, Packer, Kubernetes, and More
C4Media
?
Was jede*r ¨¹ber skalierbare Infrastruktur mit CQRS, Eventstore und Kubernetes...
Was jede*r ¨¹ber skalierbare Infrastruktur mit CQRS, Eventstore und Kubernetes...
Marlon Alagoda
?
Amplify? ?? ???? ?? ??? ? ???? - ???(IDEASAM) :: AWS Community Day 2020
Amplify? ?? ???? ?? ??? ? ???? - ???(IDEASAM) :: AWS Community Day 2020
AWSKRUG - AWS???????
?
AWS Presents: Infrastructure as Code on AWS - ChefConf 2015
AWS Presents: Infrastructure as Code on AWS - ChefConf 2015
Chef
?
CON420 Infrastructure as code for containers
CON420 Infrastructure as code for containers
Nathan Peck
?
PipelineAI Continuous Machine Learning and AI - Rework Deep Learning Summit -...
PipelineAI Continuous Machine Learning and AI - Rework Deep Learning Summit -...
Chris Fregly
?
Open Shift.Run2019 ¥Þ¥¤¥¯¥í¥µ©`¥Ó¥¹¤Îé_°k¤ËÆ£¤ì¤ëǰ¤Ëdapr¤òʹ¤ª¤¦
Open Shift.Run2019 ¥Þ¥¤¥¯¥í¥µ©`¥Ó¥¹¤Îé_°k¤ËÆ£¤ì¤ëǰ¤Ëdapr¤òʹ¤ª¤¦
kei omizo
?
AWS Serverless with Chalice
AWS Serverless with Chalice
Suman Debnath
?
Deploying DL models with Kubernetes and Kubeflow
Deploying DL models with Kubernetes and Kubeflow
DataPhoenix
?
GCP Deployment- Vertex AI
GCP Deployment- Vertex AI
Triloki Gupta
?
Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018
Holden Karau
?
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Animesh Singh
?
Deploy your machine learning models to production with Kubernetes
Deploy your machine learning models to production with Kubernetes
cnvrg.io AI OS - Hands-on ML Workshops
?
"Scaling ML from 0 to millions of users", Julien Simon, AWS Dev Day Kyiv 2019
"Scaling ML from 0 to millions of users", Julien Simon, AWS Dev Day Kyiv 2019
Provectus
?
Hydrosphere.io for ODSC: Webinar on Kubeflow
Hydrosphere.io for ODSC: Webinar on Kubeflow
Rustem Zakiev
?
Categorizing Docker Hub Public Images
Categorizing Docker Hub Public Images
Roberto Hashioka
?
running Tensorflow in Production
running Tensorflow in Production
Matthias Feys
?
Serving models using KFServing
Serving models using KFServing
Theofilos Papapanagiotou
?
Scale Machine Learning from zero to millions of users (April 2020)
Scale Machine Learning from zero to millions of users (April 2020)
Julien SIMON
?
Machine Learning using Kubernetes - AI Conclave 2019
Machine Learning using Kubernetes - AI Conclave 2019
Arun Gupta
?
TensorFlow London 14: Ben Hall 'Machine Learning Workloads with Kubernetes an...
TensorFlow London 14: Ben Hall 'Machine Learning Workloads with Kubernetes an...
Seldon
?
End-to-End ML Models Deployment Tutorial
End-to-End ML Models Deployment Tutorial
Atharva Joshi
?
Kubecon 2023 EU - KServe - The State and Future of Cloud-Native Model Serving
Kubecon 2023 EU - KServe - The State and Future of Cloud-Native Model Serving
Theofilos Papapanagiotou
?
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Iulian Pintoiu
?
Pipelines for model deployment
Pipelines for model deployment
Ramon Navarro
?
MLflow Model Serving
MLflow Model Serving
Databricks
?
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
amesar0
?
Kubernetes
Kubernetes
Diego Pacheco
?
Exploring Infrastructure Management for GenAI Beyond Kubernetes
Exploring Infrastructure Management for GenAI Beyond Kubernetes
DataPhoenix
?
ODS.ai Odessa Meetup #4: NLP: §Ú§Ù§Þ§Ö§ß§Ö§ß§Ú§ñ §Ù§Ñ §á§à§ã§Ý§Ö§Õ§ß§Ú§Ö 10 §Ý§Ö§ä
ODS.ai Odessa Meetup #4: NLP: §Ú§Ù§Þ§Ö§ß§Ö§ß§Ú§ñ §Ù§Ñ §á§à§ã§Ý§Ö§Õ§ß§Ú§Ö 10 §Ý§Ö§ä
DataPhoenix
?

More Related Content

Similar to Deploying deep learning models with Kubernetes and Kubeflow (20)

Deploying DL models with Kubernetes and Kubeflow
Deploying DL models with Kubernetes and Kubeflow
DataPhoenix
?
GCP Deployment- Vertex AI
GCP Deployment- Vertex AI
Triloki Gupta
?
Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018
Holden Karau
?
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Animesh Singh
?
Deploy your machine learning models to production with Kubernetes
Deploy your machine learning models to production with Kubernetes
cnvrg.io AI OS - Hands-on ML Workshops
?
"Scaling ML from 0 to millions of users", Julien Simon, AWS Dev Day Kyiv 2019
"Scaling ML from 0 to millions of users", Julien Simon, AWS Dev Day Kyiv 2019
Provectus
?
Hydrosphere.io for ODSC: Webinar on Kubeflow
Hydrosphere.io for ODSC: Webinar on Kubeflow
Rustem Zakiev
?
Categorizing Docker Hub Public Images
Categorizing Docker Hub Public Images
Roberto Hashioka
?
running Tensorflow in Production
running Tensorflow in Production
Matthias Feys
?
Serving models using KFServing
Serving models using KFServing
Theofilos Papapanagiotou
?
Scale Machine Learning from zero to millions of users (April 2020)
Scale Machine Learning from zero to millions of users (April 2020)
Julien SIMON
?
Machine Learning using Kubernetes - AI Conclave 2019
Machine Learning using Kubernetes - AI Conclave 2019
Arun Gupta
?
TensorFlow London 14: Ben Hall 'Machine Learning Workloads with Kubernetes an...
TensorFlow London 14: Ben Hall 'Machine Learning Workloads with Kubernetes an...
Seldon
?
End-to-End ML Models Deployment Tutorial
End-to-End ML Models Deployment Tutorial
Atharva Joshi
?
Kubecon 2023 EU - KServe - The State and Future of Cloud-Native Model Serving
Kubecon 2023 EU - KServe - The State and Future of Cloud-Native Model Serving
Theofilos Papapanagiotou
?
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Iulian Pintoiu
?
Pipelines for model deployment
Pipelines for model deployment
Ramon Navarro
?
MLflow Model Serving
MLflow Model Serving
Databricks
?
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
amesar0
?
Kubernetes
Kubernetes
Diego Pacheco
?
Deploying DL models with Kubernetes and Kubeflow
Deploying DL models with Kubernetes and Kubeflow
DataPhoenix
?
GCP Deployment- Vertex AI
GCP Deployment- Vertex AI
Triloki Gupta
?
Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018
Holden Karau
?
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Advanced Model Inferencing leveraging Kubeflow Serving, KNative and Istio
Animesh Singh
?
"Scaling ML from 0 to millions of users", Julien Simon, AWS Dev Day Kyiv 2019
"Scaling ML from 0 to millions of users", Julien Simon, AWS Dev Day Kyiv 2019
Provectus
?
Hydrosphere.io for ODSC: Webinar on Kubeflow
Hydrosphere.io for ODSC: Webinar on Kubeflow
Rustem Zakiev
?
Categorizing Docker Hub Public Images
Categorizing Docker Hub Public Images
Roberto Hashioka
?
running Tensorflow in Production
running Tensorflow in Production
Matthias Feys
?
Scale Machine Learning from zero to millions of users (April 2020)
Scale Machine Learning from zero to millions of users (April 2020)
Julien SIMON
?
Machine Learning using Kubernetes - AI Conclave 2019
Machine Learning using Kubernetes - AI Conclave 2019
Arun Gupta
?
TensorFlow London 14: Ben Hall 'Machine Learning Workloads with Kubernetes an...
TensorFlow London 14: Ben Hall 'Machine Learning Workloads with Kubernetes an...
Seldon
?
End-to-End ML Models Deployment Tutorial
End-to-End ML Models Deployment Tutorial
Atharva Joshi
?
Kubecon 2023 EU - KServe - The State and Future of Cloud-Native Model Serving
Kubecon 2023 EU - KServe - The State and Future of Cloud-Native Model Serving
Theofilos Papapanagiotou
?
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Iulian Pintoiu
?
Pipelines for model deployment
Pipelines for model deployment
Ramon Navarro
?
MLflow Model Serving
MLflow Model Serving
Databricks
?
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
DAIS Europe Nov. 2020 presentation on MLflow Model Serving
amesar0
?

More from DataPhoenix (6)

Exploring Infrastructure Management for GenAI Beyond Kubernetes
Exploring Infrastructure Management for GenAI Beyond Kubernetes
DataPhoenix
?
ODS.ai Odessa Meetup #4: NLP: §Ú§Ù§Þ§Ö§ß§Ö§ß§Ú§ñ §Ù§Ñ §á§à§ã§Ý§Ö§Õ§ß§Ú§Ö 10 §Ý§Ö§ä
ODS.ai Odessa Meetup #4: NLP: §Ú§Ù§Þ§Ö§ß§Ö§ß§Ú§ñ §Ù§Ñ §á§à§ã§Ý§Ö§Õ§ß§Ú§Ö 10 §Ý§Ö§ä
DataPhoenix
?
ODS.ai Odessa Meetup #4: §¹§Ö§Þ§å §å§é§Ú§ä §ß§Ñ§ã §å§é§Ñ§ã§ä§Ú§ä§Ö §Ó §ã§à§â§Ö§Ó§ß§à§Ó§Ñ§ä§Ö§Ý§î§ß§à§Þ ML
ODS.ai Odessa Meetup #4: §¹§Ö§Þ§å §å§é§Ú§ä §ß§Ñ§ã §å§é§Ñ§ã§ä§Ú§ä§Ö §Ó §ã§à§â§Ö§Ó§ß§à§Ó§Ñ§ä§Ö§Ý§î§ß§à§Þ ML
DataPhoenix
?
The A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOps
DataPhoenix
?
ODS.ai Odessa Meetup #3: Object Detection in the Wild
ODS.ai Odessa Meetup #3: Object Detection in the Wild
DataPhoenix
?
ODS.ai Odessa Meetup #3: Enterprise data management - §Ó§Ö§ã§Ö§Ý§à §Ú§Ý§Ú §ß§Ö§ä?!
ODS.ai Odessa Meetup #3: Enterprise data management - §Ó§Ö§ã§Ö§Ý§à §Ú§Ý§Ú §ß§Ö§ä?!
DataPhoenix
?
Exploring Infrastructure Management for GenAI Beyond Kubernetes
Exploring Infrastructure Management for GenAI Beyond Kubernetes
DataPhoenix
?
ODS.ai Odessa Meetup #4: NLP: §Ú§Ù§Þ§Ö§ß§Ö§ß§Ú§ñ §Ù§Ñ §á§à§ã§Ý§Ö§Õ§ß§Ú§Ö 10 §Ý§Ö§ä
ODS.ai Odessa Meetup #4: NLP: §Ú§Ù§Þ§Ö§ß§Ö§ß§Ú§ñ §Ù§Ñ §á§à§ã§Ý§Ö§Õ§ß§Ú§Ö 10 §Ý§Ö§ä
DataPhoenix
?
ODS.ai Odessa Meetup #4: §¹§Ö§Þ§å §å§é§Ú§ä §ß§Ñ§ã §å§é§Ñ§ã§ä§Ú§ä§Ö §Ó §ã§à§â§Ö§Ó§ß§à§Ó§Ñ§ä§Ö§Ý§î§ß§à§Þ ML
ODS.ai Odessa Meetup #4: §¹§Ö§Þ§å §å§é§Ú§ä §ß§Ñ§ã §å§é§Ñ§ã§ä§Ú§ä§Ö §Ó §ã§à§â§Ö§Ó§ß§à§Ó§Ñ§ä§Ö§Ý§î§ß§à§Þ ML
DataPhoenix
?
The A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOps
DataPhoenix
?
ODS.ai Odessa Meetup #3: Object Detection in the Wild
ODS.ai Odessa Meetup #3: Object Detection in the Wild
DataPhoenix
?
ODS.ai Odessa Meetup #3: Enterprise data management - §Ó§Ö§ã§Ö§Ý§à §Ú§Ý§Ú §ß§Ö§ä?!
ODS.ai Odessa Meetup #3: Enterprise data management - §Ó§Ö§ã§Ö§Ý§à §Ú§Ý§Ú §ß§Ö§ä?!
DataPhoenix
?
Ad

Recently uploaded (20)

¡°Key Requirements to Successfully Implement Generative AI in Edge Devices¡ªOpt...
¡°Key Requirements to Successfully Implement Generative AI in Edge Devices¡ªOpt...
Edge AI and Vision Alliance
?
Tech-ASan: Two-stage check for Address Sanitizer - Yixuan Cao.pdf
Tech-ASan: Two-stage check for Address Sanitizer - Yixuan Cao.pdf
caoyixuan2019
?
PyCon SG 25 - Firecracker Made Easy with Python.pdf
PyCon SG 25 - Firecracker Made Easy with Python.pdf
Muhammad Yuga Nugraha
?
Security Tips for Enterprise Azure Solutions
Security Tips for Enterprise Azure Solutions
Michele Leroux Bustamante
?
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance
?
AI vs Human Writing: Can You Tell the Difference?
AI vs Human Writing: Can You Tell the Difference?
Shashi Sathyanarayana, Ph.D
?
Securing AI - There Is No Try, Only Do!.pdf
Securing AI - There Is No Try, Only Do!.pdf
Priyanka Aash
?
Oh, the Possibilities - Balancing Innovation and Risk with Generative AI.pdf
Oh, the Possibilities - Balancing Innovation and Risk with Generative AI.pdf
Priyanka Aash
?
Securing Account Lifecycles in the Age of Deepfakes.pptx
Securing Account Lifecycles in the Age of Deepfakes.pptx
FIDO Alliance
?
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
biswajitbanerjee38
?
The Future of Technology: 2025-2125 by Saikat Basu.pdf
The Future of Technology: 2025-2125 by Saikat Basu.pdf
Saikat Basu
?
"How to survive Black Friday: preparing e-commerce for a peak season", Yurii ...
"How to survive Black Friday: preparing e-commerce for a peak season", Yurii ...
Fwdays
?
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Alliance
?
From Manual to Auto Searching- FME in the Driver's Seat
From Manual to Auto Searching- FME in the Driver's Seat
Safe Software
?
Powering Multi-Page Web Applications Using Flow Apps and FME Data Streaming
Powering Multi-Page Web Applications Using Flow Apps and FME Data Streaming
Safe Software
?
Connecting Data and Intelligence: The Role of FME in Machine Learning
Connecting Data and Intelligence: The Role of FME in Machine Learning
Safe Software
?
Techniques for Automatic Device Identification and Network Assignment.pdf
Techniques for Automatic Device Identification and Network Assignment.pdf
Priyanka Aash
?
Lessons Learned from Developing Secure AI Workflows.pdf
Lessons Learned from Developing Secure AI Workflows.pdf
Priyanka Aash
?
2025_06_18 - OpenMetadata Community Meeting.pdf
2025_06_18 - OpenMetadata Community Meeting.pdf
OpenMetadata
?
The Future of Data, AI, and AR: Innovation Inspired by You.pdf
The Future of Data, AI, and AR: Innovation Inspired by You.pdf
Safe Software
?
¡°Key Requirements to Successfully Implement Generative AI in Edge Devices¡ªOpt...
¡°Key Requirements to Successfully Implement Generative AI in Edge Devices¡ªOpt...
Edge AI and Vision Alliance
?
Tech-ASan: Two-stage check for Address Sanitizer - Yixuan Cao.pdf
Tech-ASan: Two-stage check for Address Sanitizer - Yixuan Cao.pdf
caoyixuan2019
?
PyCon SG 25 - Firecracker Made Easy with Python.pdf
PyCon SG 25 - Firecracker Made Easy with Python.pdf
Muhammad Yuga Nugraha
?
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance
?
Securing AI - There Is No Try, Only Do!.pdf
Securing AI - There Is No Try, Only Do!.pdf
Priyanka Aash
?
Oh, the Possibilities - Balancing Innovation and Risk with Generative AI.pdf
Oh, the Possibilities - Balancing Innovation and Risk with Generative AI.pdf
Priyanka Aash
?
Securing Account Lifecycles in the Age of Deepfakes.pptx
Securing Account Lifecycles in the Age of Deepfakes.pptx
FIDO Alliance
?
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
biswajitbanerjee38
?
The Future of Technology: 2025-2125 by Saikat Basu.pdf
The Future of Technology: 2025-2125 by Saikat Basu.pdf
Saikat Basu
?
"How to survive Black Friday: preparing e-commerce for a peak season", Yurii ...
"How to survive Black Friday: preparing e-commerce for a peak season", Yurii ...
Fwdays
?
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Alliance
?
From Manual to Auto Searching- FME in the Driver's Seat
From Manual to Auto Searching- FME in the Driver's Seat
Safe Software
?
Powering Multi-Page Web Applications Using Flow Apps and FME Data Streaming
Powering Multi-Page Web Applications Using Flow Apps and FME Data Streaming
Safe Software
?
Connecting Data and Intelligence: The Role of FME in Machine Learning
Connecting Data and Intelligence: The Role of FME in Machine Learning
Safe Software
?
Techniques for Automatic Device Identification and Network Assignment.pdf
Techniques for Automatic Device Identification and Network Assignment.pdf
Priyanka Aash
?
Lessons Learned from Developing Secure AI Workflows.pdf
Lessons Learned from Developing Secure AI Workflows.pdf
Priyanka Aash
?
2025_06_18 - OpenMetadata Community Meeting.pdf
2025_06_18 - OpenMetadata Community Meeting.pdf
OpenMetadata
?
The Future of Data, AI, and AR: Innovation Inspired by You.pdf
The Future of Data, AI, and AR: Innovation Inspired by You.pdf
Safe Software
?
Ad

Deploying deep learning models with Kubernetes and Kubeflow