ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
MODUCON 2018
Review
2019. 02. 26.
???
dhkim518@gist.ac.kr
??? ???
2
http://www.modulabs.co.kr/
https://www.facebook.com/lab4all/
https://github.com/modulabs
MODUCON 2018
3
? ?????? ? ???? (2018. 12. 15.)
? AI ???? ??, Deep Learning College(DLC) 1? ????,
?? ? ???? Tutorial Session
? ?? ??? ??, ?? ??/ ?? ?? ??
http://moducon.kr/2018/
?? ??? ??
4
¡ù ? ?? ??? MODUCON 2018 ? ???
??? ???? ??????
5
?? ? ??? ????? NAVER ? LINE
6
? Clova: Cloud-based Virtual Assistant
Clova: AI Assistant Platform of NAVER & LINE
7
Vision
Speech
Recognition/
Synthesis
Recommen-
dation
Natural
Language
Understanding
Machine Learning
Deep Learning Model Research
? OCR: Optical Character Recognition ??????
(1) Detection: ????? text ????
https://github.com/hwalsuklee/awesome-deep-text-detection-recognition?fbclid=IwAR2844IsN0PG_G0Wwt_PkOBQTVhjCv3xbptEDlPiyzp6u7pFOD9m9qDTS-8
1. OCR
8
Remarks
- CVPR2019
- Curved text ?? ??
? OCR: Optical Character Recognition ??????
(2) Recognition: ??? text ????
https://github.com/hwalsuklee/awesome-deep-text-detection-recognition?fbclid=IwAR2844IsN0PG_G0Wwt_PkOBQTVhjCv3xbptEDlPiyzp6u7pFOD9m9qDTS-8
1. OCR
9
Remarks
- OCR ??? ?? ??? ????, ??? ??? ?? ??
- ? ???? ?? ???? ?? ? ??, ?? ??? ?? ? ????
- ???? ??? ??? (??? ????? ?? ??? ?? ??)
? Applications of tracking and re-id in in-the-wild video
? AutoCAM (www.vlive.tv/search/all?query=autocam)
2. Video AI
10
? Applications of tracking and re-id in in-the-wild video
? AutoCAM (www.vlive.tv/search/all?query=autocam)
2. Video AI
11
? Applications of tracking and re-id in in-the-wild video
? AutoCAM (www.vlive.tv/search/all?query=autocam)
2. Video AI
12
? ??? ?? ??? ????? ?? ??? ????
? AutoCAM: ?? ? ?????? ?? ??? ??? ?? ?? ???
? ??? ??? ??
Tracking + Personal Re-identification
+ Pose Estimation + Face Recognition
? ?? ??? ???? ? 30 % ? Clova ??? 90 % ?? ??? ??
? Challenging Issues
?? ????, ??? ????, ?? ??? ???¡­
? Applications of tracking and re-id in in-the-wild video
? AutoCut (www.vlive.tv/search/all?query=autocut)
2. Video AI
13
? Applications of tracking and re-id in in-the-wild video
? AutoCut (www.vlive.tv/search/all?query=autocut)
2. Video AI
14
? ??? ?? ??? ????? ?? ??? ????
? ??,???????? 1?? ?? ?? ? ? ??? 10? ?? ???
? AutoCut: ?? ?? ?????? ?? ??? ??? ??? ????
? Wavelet Pooling for Perfect Reconstruction
? Max pooling? perfect reconstruction? ? ? ?? ???
? Wavelet pooling? ??? ??? ???? ??
3. Super-Real Style Transfer
15
Yoo et al. 2018
? Wavelet Pooling for Perfect Reconstruction
? Max pooling? perfect reconstruction? ? ? ?? ???
? Wavelet pooling? ??? ??? ???? ??
3. Super-Real Style Transfer
16
Clova AI:
?? ???
? Super-real Style Transfer for Video
? Photo-realistic
? ?? ??? ?????? ???: Flickering? ??? ??? ?? ???
3. Super-Real Style Transfer
17
18
¡ù ? ??? ??? ??? edwith ?? ??? ?? ???? ??????.
https://www.edwith.org/bayesiandeeplearning/lecture/25292/
? ???? ??/??
Motivation
19 ??? ??, edwith ?? ??, https://www.edwith.org/bayesiandeeplearning/lecture/25292/
? Uncertainty: ??? ? ???? ??? ??? ????
Motivation
20
MNIST(0~9)? ??? ??? ??
? Uncertainty: ??? ? ???? ??? ??? ????
Motivation
21
MNIST(0~9)? ??? ??? ??
Input?? C ? ???? ???..
Paper
22
2016.12.05. arXiv
2017 NIPS
??? ??
23 ??? ?, MODUCON 2018 ????
Non-Bayesian ??
24 ??? ??, edwith ?? ??, https://www.edwith.org/bayesiandeeplearning/lecture/25292/
Non-Bayesian ??
25 ??? ??, edwith ?? ??, https://www.edwith.org/bayesiandeeplearning/lecture/25292/
? Bayesian Neural Network (BNN)
? ??? Uncertainty ??? ?? BNN ? ???? ????
? ???? Neural Network? ?? Training ??? ?? ??? ????
? ???? Neural Network? ?? ?? ???? ????
? ? ???? ???? ??
? Non-Bayesian ??
? Ensemble ? ???? ?? ??? ?????
? Neural Network ??? ??? ????? ??? ?? ?? ??? ??
? ??? Uncertainty ?? ??? ??
? Remark
? ????? ??? ???? ??????
???? ??? ???? Uncertainty ??? ?? ??? ??? ? ??
Non-Bayesian ??
26 ??? ?, MODUCON 2018 ????
? Ensemble Learning Method
? ??? ?? ????? ?? ???? ??
? ? ????? ????? ???? ?? ??? ????
Ensemble Model
27 ??? ?, MODUCON 2018 ????
? Ensemble Learning Method
? ??? ?? ????? ?? ???? ??
? ? ????? ????? ???? ?? ??? ????
Ensemble Model
28
Remark
Input X? ???
Output Y ??? ?? ?? ???,
Y? ????? ???: ??? ??
??? ?, MODUCON 2018 ????
? Classification
? Brier Score (BS): ??? ????? ???? Loss function ? ??
? ?? Label ? one-hot ??? network? output ??? squared error ? ??
? Regression
? ???? regression ???? NN? single value output ? ??
? ?? ???? ?? ?? Mean Squared Error (MSE)? ?? ??
? ??? MSE? uncertainty? ???? ???
? Negative Log-likelihood (NLL)
Ensemble Model
29 ??? ?, MODUCON 2018 ????
(Optional ? ????, ? ??? ??? ?? ??)
? Remark. Data augmentation? ?? ??
? Explaining and Harnessing Adversarial Examples ?? ?? ??
? I.J. Goodfellow, J. Shlens, and C. Szegedy in ICLR, 2015
? Fast Gradient Sign Method? ???? adversarial examples ??
? Adversarial perturbation? network? loss ? ???? ???? training data?
perturbation? ???
? Classifier? Robustness ??
Adversarial Training
30
????????
??? ?, MODUCON 2018 ????
2. ? ????? Parameters Initialization
3. M?? ????? ?? ??
4. ?? ?????? ? ????? ????? ?? Mini batch dataset ??
5. Adversarial Example ?? (Optional)
6. Loss? ??? ??? ? ????? ???? ??
?? ??
31 ??? ?, MODUCON 2018 ????
? MNIST & Not-MNIST
Result: Classification
32 ??? ?, MODUCON 2018 ????
? MC-Dropout ? ?? ??
? Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
? R: Random signed vector ? Adversarial example? ?? ??? ?? ??
? AT: Adversarial Training
Result: Classification
33
MNIST? ??
MNIST? ???
MNIST? ??
Not-MNIST? ???
*???? 0: ????? ??
*Ensemble? ?? ???? ?? ???
*MC dropout ?? Ensemble ??? ??
??? ?, MODUCON 2018 ????
? Known: Dogs (ImageNet), Unknown: Non-dogs (ImageNet)
Result: Classification
34
Dogs? ??
Dogs? ???
Dogs? ??
Non-Dogs? ???
Dogs? ??
Dogs? ???
Dogs? ??
Non-Dogs? ???
Entropy Values
*Dogs-Dogs ? ???? 0: ????? ??
*Dogs-Ndogs ? Ensemble ??? ?????
????? ?? ???
Max. Predicted Probability
*Dogs-Dogs ? ?? ??? ?? 1??
*Dogs-Ndogs ? Ensemble ??? ?????
?? ??? ?? ????
??? ?, MODUCON 2018 ????
Result: Regression
35
Empirical Variance (5)
using MSE
Density Network (1)
using NLL
Adversarial Training Deep Ensemble (5)
Density Network
Trick
Positive ???
????? ??
Exp() ??? ??
Empirical Variance (5) Deep Ensemble (5)
Ground truth curve
Observed noisy training data
Predicted mean along with standard deviation
??? ??, edwith ?? ??, https://www.edwith.org/bayesiandeeplearning/lecture/25292/
? https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble
Further Info. (???? Github)
36 ??? ?, Github ??, https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble
? https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble
Further Info. (???? Github)
37 ??? ?, Github ??, https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble
? ?? ?: ???? ??
? ???? ??? ?? ???? ??
? ????? ???? ??? ??? ???? ?? ? ?? ??? ???? ?? ?
? ??? ? ??! Performance? ??!
? ???? ???? ? (??? ??? ???? ??? ??? ? ???)
? ?? ?? ?? ?? ??/ ?? ?? ??? ?? ?????..
? ??? ??? ??? ??? ??: ? ?? ???? ???, ??? ???? ???..
? ??????? ???????? ?? ???? ????
? 2019 MODUCON ? ?????:)
MODUCON 2018 ??
38
Thank you
39
? MC-Dropout ? ?? ??
? Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
? R: Random signed vector ? Adversarial example? ?? ??? ?? ??
? AT: Adversarial Training
? AT? ???? Ensemble ???? ??? ?????
? Classification ???? ???, Loss (score) ?? NLL? BS ?? ??
Appendix. Result: Classification
40

More Related Content

[????] ??? 2018 ??

  • 1. MODUCON 2018 Review 2019. 02. 26. ??? dhkim518@gist.ac.kr
  • 3. MODUCON 2018 3 ? ?????? ? ???? (2018. 12. 15.) ? AI ???? ??, Deep Learning College(DLC) 1? ????, ?? ? ???? Tutorial Session ? ?? ??? ??, ?? ??/ ?? ?? ?? http://moducon.kr/2018/
  • 4. ?? ??? ?? 4 ¡ù ? ?? ??? MODUCON 2018 ? ??? ??? ???? ??????
  • 5. 5
  • 6. ?? ? ??? ????? NAVER ? LINE 6
  • 7. ? Clova: Cloud-based Virtual Assistant Clova: AI Assistant Platform of NAVER & LINE 7 Vision Speech Recognition/ Synthesis Recommen- dation Natural Language Understanding Machine Learning Deep Learning Model Research
  • 8. ? OCR: Optical Character Recognition ?????? (1) Detection: ????? text ???? https://github.com/hwalsuklee/awesome-deep-text-detection-recognition?fbclid=IwAR2844IsN0PG_G0Wwt_PkOBQTVhjCv3xbptEDlPiyzp6u7pFOD9m9qDTS-8 1. OCR 8 Remarks - CVPR2019 - Curved text ?? ??
  • 9. ? OCR: Optical Character Recognition ?????? (2) Recognition: ??? text ???? https://github.com/hwalsuklee/awesome-deep-text-detection-recognition?fbclid=IwAR2844IsN0PG_G0Wwt_PkOBQTVhjCv3xbptEDlPiyzp6u7pFOD9m9qDTS-8 1. OCR 9 Remarks - OCR ??? ?? ??? ????, ??? ??? ?? ?? - ? ???? ?? ???? ?? ? ??, ?? ??? ?? ? ???? - ???? ??? ??? (??? ????? ?? ??? ?? ??)
  • 10. ? Applications of tracking and re-id in in-the-wild video ? AutoCAM (www.vlive.tv/search/all?query=autocam) 2. Video AI 10
  • 11. ? Applications of tracking and re-id in in-the-wild video ? AutoCAM (www.vlive.tv/search/all?query=autocam) 2. Video AI 11
  • 12. ? Applications of tracking and re-id in in-the-wild video ? AutoCAM (www.vlive.tv/search/all?query=autocam) 2. Video AI 12 ? ??? ?? ??? ????? ?? ??? ???? ? AutoCAM: ?? ? ?????? ?? ??? ??? ?? ?? ??? ? ??? ??? ?? Tracking + Personal Re-identification + Pose Estimation + Face Recognition ? ?? ??? ???? ? 30 % ? Clova ??? 90 % ?? ??? ?? ? Challenging Issues ?? ????, ??? ????, ?? ??? ???¡­
  • 13. ? Applications of tracking and re-id in in-the-wild video ? AutoCut (www.vlive.tv/search/all?query=autocut) 2. Video AI 13
  • 14. ? Applications of tracking and re-id in in-the-wild video ? AutoCut (www.vlive.tv/search/all?query=autocut) 2. Video AI 14 ? ??? ?? ??? ????? ?? ??? ???? ? ??,???????? 1?? ?? ?? ? ? ??? 10? ?? ??? ? AutoCut: ?? ?? ?????? ?? ??? ??? ??? ????
  • 15. ? Wavelet Pooling for Perfect Reconstruction ? Max pooling? perfect reconstruction? ? ? ?? ??? ? Wavelet pooling? ??? ??? ???? ?? 3. Super-Real Style Transfer 15 Yoo et al. 2018
  • 16. ? Wavelet Pooling for Perfect Reconstruction ? Max pooling? perfect reconstruction? ? ? ?? ??? ? Wavelet pooling? ??? ??? ???? ?? 3. Super-Real Style Transfer 16 Clova AI: ?? ???
  • 17. ? Super-real Style Transfer for Video ? Photo-realistic ? ?? ??? ?????? ???: Flickering? ??? ??? ?? ??? 3. Super-Real Style Transfer 17
  • 18. 18 ¡ù ? ??? ??? ??? edwith ?? ??? ?? ???? ??????. https://www.edwith.org/bayesiandeeplearning/lecture/25292/
  • 19. ? ???? ??/?? Motivation 19 ??? ??, edwith ?? ??, https://www.edwith.org/bayesiandeeplearning/lecture/25292/
  • 20. ? Uncertainty: ??? ? ???? ??? ??? ???? Motivation 20 MNIST(0~9)? ??? ??? ??
  • 21. ? Uncertainty: ??? ? ???? ??? ??? ???? Motivation 21 MNIST(0~9)? ??? ??? ?? Input?? C ? ???? ???..
  • 23. ??? ?? 23 ??? ?, MODUCON 2018 ????
  • 24. Non-Bayesian ?? 24 ??? ??, edwith ?? ??, https://www.edwith.org/bayesiandeeplearning/lecture/25292/
  • 25. Non-Bayesian ?? 25 ??? ??, edwith ?? ??, https://www.edwith.org/bayesiandeeplearning/lecture/25292/
  • 26. ? Bayesian Neural Network (BNN) ? ??? Uncertainty ??? ?? BNN ? ???? ???? ? ???? Neural Network? ?? Training ??? ?? ??? ???? ? ???? Neural Network? ?? ?? ???? ???? ? ? ???? ???? ?? ? Non-Bayesian ?? ? Ensemble ? ???? ?? ??? ????? ? Neural Network ??? ??? ????? ??? ?? ?? ??? ?? ? ??? Uncertainty ?? ??? ?? ? Remark ? ????? ??? ???? ?????? ???? ??? ???? Uncertainty ??? ?? ??? ??? ? ?? Non-Bayesian ?? 26 ??? ?, MODUCON 2018 ????
  • 27. ? Ensemble Learning Method ? ??? ?? ????? ?? ???? ?? ? ? ????? ????? ???? ?? ??? ???? Ensemble Model 27 ??? ?, MODUCON 2018 ????
  • 28. ? Ensemble Learning Method ? ??? ?? ????? ?? ???? ?? ? ? ????? ????? ???? ?? ??? ???? Ensemble Model 28 Remark Input X? ??? Output Y ??? ?? ?? ???, Y? ????? ???: ??? ?? ??? ?, MODUCON 2018 ????
  • 29. ? Classification ? Brier Score (BS): ??? ????? ???? Loss function ? ?? ? ?? Label ? one-hot ??? network? output ??? squared error ? ?? ? Regression ? ???? regression ???? NN? single value output ? ?? ? ?? ???? ?? ?? Mean Squared Error (MSE)? ?? ?? ? ??? MSE? uncertainty? ???? ??? ? Negative Log-likelihood (NLL) Ensemble Model 29 ??? ?, MODUCON 2018 ????
  • 30. (Optional ? ????, ? ??? ??? ?? ??) ? Remark. Data augmentation? ?? ?? ? Explaining and Harnessing Adversarial Examples ?? ?? ?? ? I.J. Goodfellow, J. Shlens, and C. Szegedy in ICLR, 2015 ? Fast Gradient Sign Method? ???? adversarial examples ?? ? Adversarial perturbation? network? loss ? ???? ???? training data? perturbation? ??? ? Classifier? Robustness ?? Adversarial Training 30 ???????? ??? ?, MODUCON 2018 ????
  • 31. 2. ? ????? Parameters Initialization 3. M?? ????? ?? ?? 4. ?? ?????? ? ????? ????? ?? Mini batch dataset ?? 5. Adversarial Example ?? (Optional) 6. Loss? ??? ??? ? ????? ???? ?? ?? ?? 31 ??? ?, MODUCON 2018 ????
  • 32. ? MNIST & Not-MNIST Result: Classification 32 ??? ?, MODUCON 2018 ????
  • 33. ? MC-Dropout ? ?? ?? ? Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning ? R: Random signed vector ? Adversarial example? ?? ??? ?? ?? ? AT: Adversarial Training Result: Classification 33 MNIST? ?? MNIST? ??? MNIST? ?? Not-MNIST? ??? *???? 0: ????? ?? *Ensemble? ?? ???? ?? ??? *MC dropout ?? Ensemble ??? ?? ??? ?, MODUCON 2018 ????
  • 34. ? Known: Dogs (ImageNet), Unknown: Non-dogs (ImageNet) Result: Classification 34 Dogs? ?? Dogs? ??? Dogs? ?? Non-Dogs? ??? Dogs? ?? Dogs? ??? Dogs? ?? Non-Dogs? ??? Entropy Values *Dogs-Dogs ? ???? 0: ????? ?? *Dogs-Ndogs ? Ensemble ??? ????? ????? ?? ??? Max. Predicted Probability *Dogs-Dogs ? ?? ??? ?? 1?? *Dogs-Ndogs ? Ensemble ??? ????? ?? ??? ?? ???? ??? ?, MODUCON 2018 ????
  • 35. Result: Regression 35 Empirical Variance (5) using MSE Density Network (1) using NLL Adversarial Training Deep Ensemble (5) Density Network Trick Positive ??? ????? ?? Exp() ??? ?? Empirical Variance (5) Deep Ensemble (5) Ground truth curve Observed noisy training data Predicted mean along with standard deviation ??? ??, edwith ?? ??, https://www.edwith.org/bayesiandeeplearning/lecture/25292/
  • 36. ? https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble Further Info. (???? Github) 36 ??? ?, Github ??, https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble
  • 37. ? https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble Further Info. (???? Github) 37 ??? ?, Github ??, https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble
  • 38. ? ?? ?: ???? ?? ? ???? ??? ?? ???? ?? ? ????? ???? ??? ??? ???? ?? ? ?? ??? ???? ?? ? ? ??? ? ??! Performance? ??! ? ???? ???? ? (??? ??? ???? ??? ??? ? ???) ? ?? ?? ?? ?? ??/ ?? ?? ??? ?? ?????.. ? ??? ??? ??? ??? ??: ? ?? ???? ???, ??? ???? ???.. ? ??????? ???????? ?? ???? ???? ? 2019 MODUCON ? ?????:) MODUCON 2018 ?? 38
  • 40. ? MC-Dropout ? ?? ?? ? Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning ? R: Random signed vector ? Adversarial example? ?? ??? ?? ?? ? AT: Adversarial Training ? AT? ???? Ensemble ???? ??? ????? ? Classification ???? ???, Loss (score) ?? NLL? BS ?? ?? Appendix. Result: Classification 40