際際滷

際際滷Share a Scribd company logo
Big Data breakthroughs in HealthCare:
from re-active to pro-active care
Dirk Van Hyfte MD, PhD
Healthcare Data Journey
share
capture
understand
act
Upwards of 80  95% of Healthcare Data Is Unstructured
 Patient complaints
 Notes, observations
 Theories, opinions
 Conclusions
Unstructured
Data
 Coded fields
 Values
 Lab results
Structured
Data
Classical Text Analysis
Top Down Approach
iKnow Text Analysis
tuna
lobster
sub
seahorse
treasur
e
cod
angel
fish
Bottom Up Approach
Examples of the iKnow Text Analysis Breakthroughs in Action
Intelligent EHR
Navigation
Patient Cohort ID Driving Actions
with Real World
Predictive Models
Breakthrough
Population
Screening
Finding Elusive
Unknowns
Driving actions with real world predictve models
 Early detection of
 Hepatitis C
 Seculsion
 Sepsis
 Delirium
Early detection of Hepatitis C
Injecting drug user
Hiv Lft
Acupuncture
PiercingTattoo
Prison stay
Men having sex with men
Household & sex partners of hep carriers
Country of origin
Transfusion before 1992
Early detection of Seclusion
Breakthrough Population Screening
HealthCare Journey
 Prevention of
 Hepatitis C
 Seculsion
 Sepsis
 Delirium
 Personalised Medicine
 Cancer therapy
HealthCare Journey
 Prevention of
 Hepatitis C
 Seculsion
 Sepsis
 Delirium
 Personalised Medicine
 Cancer therapy
proactivereactive
Protocol design based on 
How long
will the
trial take?
Will we be able to
recruit the
necessary volume
of patients in order
to collect data with
sufficient
statistical power to
meet regulatory
requirements?
Where will
we find
sufficient
numbers of
the right
patients?
Do the
inclusion/ex
clusion
criteria
make
sense?
Protocol design based on 
How long
will the
trial take?
Will we be able to
recruit the
necessary volume
of patients in order
to collect data with
sufficient
statistical power to
meet regulatory
requirements?
Where will
we find
sufficient
numbers of
the right
patients?
Do the
inclusion/ex
clusion
criteria
make
sense?
Real World Clinical Data:
both structured fields and clinical notes
Healthcare & Life Science Journey
Expert
Healthcare & Life Science Journey
ExpertData
Healthcare & Life Science Journey
ExpertData
Textmining
nursing notes
Using iKnow
Overview
 Problem description
 Data
 Methods
 Results & conclusion
 Further Research
Problem
Is it possible to detect early:
sudden patient deterioration or a delirium using nursing
notes ?
Data
Delirium
 3534 patients
 1044 positive ( 29,54 %)
 Maximum of 4 days ahead / 4 consecutive days
Sudden deterioration
 1141 patients
 391 positive ( 34,27 %)
 Maximum of 3 days ahead / 3 consecutive days
Method
 (Anonymization)
 Feature extraction
 Document vector
 Classification
Feature extraction I
The old method: A bag-of-words
 Used in spam-filters
 Each occurring word is a feature
 A text is represented by tallying each word in that
particular text
Feature extraction II
Using iKnow concepts (and relations)
Document vector
Feature - value matrix similar to the bag-of-words model
(but smaller)
Value = concept frequency - inverse document frequency
Conce
pt 1
Concept
2
Conc
ept 3
<CRC>
1

(60k-
80k)
Patient #1 0 1 1 / 3 0
Patient #2 0.5 0 1 / 3 1
Patient #3 0.5 0 1 / 3 0
Deterioration: 59590 distinct features
Delirium: 80220 distinct features
Classification
 Na誰eve Bayes Classificator
(similar to spam-filtering)
 Support Vector Machines
maximum margin separation
Results I
Delirium
R1: AUC: 0.801 Prec: 0.769
R2: AUC: 0.784 Prec: 0.703
Deterioration
R1: AUC: 0.823 Prec: 0.770
R2: AUC: 0.809 Prec: 0.764
Pos 0.578
Neg 0.849
Pos 0.758
Neg 0.681
Pos 0.476
Neg 0.923
Pos 0.627
Neg 0.836
Results II (Dutch)
Delirium
1. Erg gedesorienteerd
2. inco verschoond
3. dement
4. Heel onrustig
5. avond erg onrustig
6. onrustig dochter
7. alle tijden
8. iedere controle
9. helemaal duidelijk
10. vanavond onrustig
11. gedesorienteerd
12. vannacht onrustig
13. avond rustig aanwezig
Deterioration
1. 60% Kapje
2. 100% Kapje
3. zieke indruk
4. 10 liter
5. spoed-ok
6. regelmatig uitgezogen
7. doorgebeld
8. 15 ltr 02
9. mayo tube
10. ademhalingsoefeningen
11. gespannen
12. hoge ademfrequentie
13. goed plat
Further research
 More data!
 Less features by:
- Latent semantic indexing
- Autoencoders
 Adding structured data / other data / current prediction
methods
Questions ?
Ad

Recommended

Rare diseases in children and genetic diagnosis - part 1 [Today's paper]
Rare diseases in children and genetic diagnosis - part 1 [Today's paper]
HeonjongHan
Quantitative Medicine Feb 2009
Quantitative Medicine Feb 2009
Ian Foster
Ontology-Driven Clinical Intelligence: A Path from the Biobank to Cross-Disea...
Ontology-Driven Clinical Intelligence: A Path from the Biobank to Cross-Disea...
Remedy Informatics
Big Data in Healthcare: Hype and Hope on the Path to Personalized Medicine
Big Data in Healthcare: Hype and Hope on the Path to Personalized Medicine
New York eHealth Collaborative
2015 EMS 3.0
2015 EMS 3.0
Nick Nudell
2016 Dal Human Genetics - Genomics in Medicine Lecture
2016 Dal Human Genetics - Genomics in Medicine Lecture
Dan Gaston
The State Of E In Sexas
The State Of E In Sexas
dialysis_pros
David Snead on The use of digital pathology in the primary diagnosis of histo...
David Snead on The use of digital pathology in the primary diagnosis of histo...
Cirdan
M-Health
M-Health
Bhumik Shah
Using real-world evidence to investigate clinical research questions
Using real-world evidence to investigate clinical research questions
Karin Verspoor
Deep Learning for AI (3)
Deep Learning for AI (3)
Dongheon Lee
01-14 Analysis of Liquid Biopsies - Ibrahim.pdf
01-14 Analysis of Liquid Biopsies - Ibrahim.pdf
OCRE | Open Clouds for Research Environments
Leveraging Text Classification Strategies for Clinical and Public Health Appl...
Leveraging Text Classification Strategies for Clinical and Public Health Appl...
Karin Verspoor
2014 12-11 Skipr99 masterclass Arnhem
2014 12-11 Skipr99 masterclass Arnhem
Alain van Gool
Zen and the Art of Data Science Maintenance
Zen and the Art of Data Science Maintenance
Elsevier
2016 ngs health_lecture
2016 ngs health_lecture
Dan Gaston
The Future of Personalized Medicine
The Future of Personalized Medicine
Edgewater
Connected Health & Me - Matic Meglic - Nov 24th 2014
Connected Health & Me - Matic Meglic - Nov 24th 2014
ipposi
CNV Annotations: a crucial step in your variant analysis
CNV Annotations: a crucial step in your variant analysis
Golden Helix
IVR Clinical Concepts RTSM & ePRO/eCOA eSource Solutions
IVR Clinical Concepts RTSM & ePRO/eCOA eSource Solutions
Jay Canter
Clinical Genomics and Medicine
Clinical Genomics and Medicine
Warren Kibbe
Making Healthcare Waste Reduction and Patient Safety Actionable - HAS Session 6
Making Healthcare Waste Reduction and Patient Safety Actionable - HAS Session 6
Health Catalyst
Watson from Jeopardy to healthcare
Watson from Jeopardy to healthcare
Health Informatics New Zealand
2014 07 ismb personalized medicine
2014 07 ismb personalized medicine
University of California, San Francisco
ICBO 2014, October 8, 2014
ICBO 2014, October 8, 2014
Warren Kibbe
Knowledge management in context: Implications for clinical pathologists by Dr...
Knowledge management in context: Implications for clinical pathologists by Dr...
Cirdan
Combining Patient Records, Genomic Data and Environmental Data to Enable Tran...
Combining Patient Records, Genomic Data and Environmental Data to Enable Tran...
Perficient, Inc.
Medical Deep Learning: Clinical, Technical, & Regulatory Challenges and How t...
Medical Deep Learning: Clinical, Technical, & Regulatory Challenges and How t...
Devon Bernard
Samen vernieuwende applicaties ontwikkelen
Samen vernieuwende applicaties ontwikkelen
InterSystems Benelux
Pati谷nteninformatie: hoe ontwikkel je een ge誰ntegreerd zorginformatieplatform?
Pati谷nteninformatie: hoe ontwikkel je een ge誰ntegreerd zorginformatieplatform?
InterSystems Benelux

More Related Content

Similar to Big data breakthroughs in healthcare: from re-active to pro-active care (20)

M-Health
M-Health
Bhumik Shah
Using real-world evidence to investigate clinical research questions
Using real-world evidence to investigate clinical research questions
Karin Verspoor
Deep Learning for AI (3)
Deep Learning for AI (3)
Dongheon Lee
01-14 Analysis of Liquid Biopsies - Ibrahim.pdf
01-14 Analysis of Liquid Biopsies - Ibrahim.pdf
OCRE | Open Clouds for Research Environments
Leveraging Text Classification Strategies for Clinical and Public Health Appl...
Leveraging Text Classification Strategies for Clinical and Public Health Appl...
Karin Verspoor
2014 12-11 Skipr99 masterclass Arnhem
2014 12-11 Skipr99 masterclass Arnhem
Alain van Gool
Zen and the Art of Data Science Maintenance
Zen and the Art of Data Science Maintenance
Elsevier
2016 ngs health_lecture
2016 ngs health_lecture
Dan Gaston
The Future of Personalized Medicine
The Future of Personalized Medicine
Edgewater
Connected Health & Me - Matic Meglic - Nov 24th 2014
Connected Health & Me - Matic Meglic - Nov 24th 2014
ipposi
CNV Annotations: a crucial step in your variant analysis
CNV Annotations: a crucial step in your variant analysis
Golden Helix
IVR Clinical Concepts RTSM & ePRO/eCOA eSource Solutions
IVR Clinical Concepts RTSM & ePRO/eCOA eSource Solutions
Jay Canter
Clinical Genomics and Medicine
Clinical Genomics and Medicine
Warren Kibbe
Making Healthcare Waste Reduction and Patient Safety Actionable - HAS Session 6
Making Healthcare Waste Reduction and Patient Safety Actionable - HAS Session 6
Health Catalyst
Watson from Jeopardy to healthcare
Watson from Jeopardy to healthcare
Health Informatics New Zealand
2014 07 ismb personalized medicine
2014 07 ismb personalized medicine
University of California, San Francisco
ICBO 2014, October 8, 2014
ICBO 2014, October 8, 2014
Warren Kibbe
Knowledge management in context: Implications for clinical pathologists by Dr...
Knowledge management in context: Implications for clinical pathologists by Dr...
Cirdan
Combining Patient Records, Genomic Data and Environmental Data to Enable Tran...
Combining Patient Records, Genomic Data and Environmental Data to Enable Tran...
Perficient, Inc.
Medical Deep Learning: Clinical, Technical, & Regulatory Challenges and How t...
Medical Deep Learning: Clinical, Technical, & Regulatory Challenges and How t...
Devon Bernard
Using real-world evidence to investigate clinical research questions
Using real-world evidence to investigate clinical research questions
Karin Verspoor
Deep Learning for AI (3)
Deep Learning for AI (3)
Dongheon Lee
Leveraging Text Classification Strategies for Clinical and Public Health Appl...
Leveraging Text Classification Strategies for Clinical and Public Health Appl...
Karin Verspoor
2014 12-11 Skipr99 masterclass Arnhem
2014 12-11 Skipr99 masterclass Arnhem
Alain van Gool
Zen and the Art of Data Science Maintenance
Zen and the Art of Data Science Maintenance
Elsevier
2016 ngs health_lecture
2016 ngs health_lecture
Dan Gaston
The Future of Personalized Medicine
The Future of Personalized Medicine
Edgewater
Connected Health & Me - Matic Meglic - Nov 24th 2014
Connected Health & Me - Matic Meglic - Nov 24th 2014
ipposi
CNV Annotations: a crucial step in your variant analysis
CNV Annotations: a crucial step in your variant analysis
Golden Helix
IVR Clinical Concepts RTSM & ePRO/eCOA eSource Solutions
IVR Clinical Concepts RTSM & ePRO/eCOA eSource Solutions
Jay Canter
Clinical Genomics and Medicine
Clinical Genomics and Medicine
Warren Kibbe
Making Healthcare Waste Reduction and Patient Safety Actionable - HAS Session 6
Making Healthcare Waste Reduction and Patient Safety Actionable - HAS Session 6
Health Catalyst
ICBO 2014, October 8, 2014
ICBO 2014, October 8, 2014
Warren Kibbe
Knowledge management in context: Implications for clinical pathologists by Dr...
Knowledge management in context: Implications for clinical pathologists by Dr...
Cirdan
Combining Patient Records, Genomic Data and Environmental Data to Enable Tran...
Combining Patient Records, Genomic Data and Environmental Data to Enable Tran...
Perficient, Inc.
Medical Deep Learning: Clinical, Technical, & Regulatory Challenges and How t...
Medical Deep Learning: Clinical, Technical, & Regulatory Challenges and How t...
Devon Bernard

More from InterSystems Benelux (11)

Samen vernieuwende applicaties ontwikkelen
Samen vernieuwende applicaties ontwikkelen
InterSystems Benelux
Pati谷nteninformatie: hoe ontwikkel je een ge誰ntegreerd zorginformatieplatform?
Pati谷nteninformatie: hoe ontwikkel je een ge誰ntegreerd zorginformatieplatform?
InterSystems Benelux
Innovatieve technologie en IT in de zorg tijdens InterSystems Summit 2015
Innovatieve technologie en IT in de zorg tijdens InterSystems Summit 2015
InterSystems Benelux
Vakbeurs Zorg en ICT: Komt u ook?
Vakbeurs Zorg en ICT: Komt u ook?
InterSystems Benelux
De belangrijkste Database Management Systemen voor het opslaan van (ongestruc...
De belangrijkste Database Management Systemen voor het opslaan van (ongestruc...
InterSystems Benelux
Generating Actionable Insight from Social Media
Generating Actionable Insight from Social Media
InterSystems Benelux
Blog 12: Ongestructureerde big data analyseren
Blog 12: Ongestructureerde big data analyseren
InterSystems Benelux
InterSystems presentatie: Making Sense of Unstructured Data
InterSystems presentatie: Making Sense of Unstructured Data
InterSystems Benelux
InterSystems presentatie: Making sense of non-structured data in the medical ...
InterSystems presentatie: Making sense of non-structured data in the medical ...
InterSystems Benelux
InterSystems Presentatie: Breakthrough BI: analyzing all the data
InterSystems Presentatie: Breakthrough BI: analyzing all the data
InterSystems Benelux
InterSystems presentatie: Active analytics for big data
InterSystems presentatie: Active analytics for big data
InterSystems Benelux
Samen vernieuwende applicaties ontwikkelen
Samen vernieuwende applicaties ontwikkelen
InterSystems Benelux
Pati谷nteninformatie: hoe ontwikkel je een ge誰ntegreerd zorginformatieplatform?
Pati谷nteninformatie: hoe ontwikkel je een ge誰ntegreerd zorginformatieplatform?
InterSystems Benelux
Innovatieve technologie en IT in de zorg tijdens InterSystems Summit 2015
Innovatieve technologie en IT in de zorg tijdens InterSystems Summit 2015
InterSystems Benelux
Vakbeurs Zorg en ICT: Komt u ook?
Vakbeurs Zorg en ICT: Komt u ook?
InterSystems Benelux
De belangrijkste Database Management Systemen voor het opslaan van (ongestruc...
De belangrijkste Database Management Systemen voor het opslaan van (ongestruc...
InterSystems Benelux
Generating Actionable Insight from Social Media
Generating Actionable Insight from Social Media
InterSystems Benelux
Blog 12: Ongestructureerde big data analyseren
Blog 12: Ongestructureerde big data analyseren
InterSystems Benelux
InterSystems presentatie: Making Sense of Unstructured Data
InterSystems presentatie: Making Sense of Unstructured Data
InterSystems Benelux
InterSystems presentatie: Making sense of non-structured data in the medical ...
InterSystems presentatie: Making sense of non-structured data in the medical ...
InterSystems Benelux
InterSystems Presentatie: Breakthrough BI: analyzing all the data
InterSystems Presentatie: Breakthrough BI: analyzing all the data
InterSystems Benelux
InterSystems presentatie: Active analytics for big data
InterSystems presentatie: Active analytics for big data
InterSystems Benelux
Ad

Recently uploaded (20)

Computer aided formulation development optimization
Computer aided formulation development optimization
Swami ramanand teerth marathwada university
15 malnutrition in children pediatrics 1.ppt
15 malnutrition in children pediatrics 1.ppt
BECKYCHEPNGENO
Quality by Design Tools in Pharmaceutical Manufacturing Technology
Quality by Design Tools in Pharmaceutical Manufacturing Technology
39KomalZaveri
PENICILINES AND THEIR MECHANISM OF ACTION .pptx
PENICILINES AND THEIR MECHANISM OF ACTION .pptx
PackialakshmiP
RCC Treatment Innovations in Practice: Preparing for Individualized Patient Care
RCC Treatment Innovations in Practice: Preparing for Individualized Patient Care
PVI, PeerView Institute for Medical Education
Alzheimers Disease Neuroradiology Case Conference: Mastering the New Frontie...
Alzheimers Disease Neuroradiology Case Conference: Mastering the New Frontie...
PVI, PeerView Institute for Medical Education
Severe Acute Respiratory Syndrome (SARS)
Severe Acute Respiratory Syndrome (SARS)
Dr. Anu Marhatta
Aspirin powder or Acetyl salicylic acid powder.docx
Aspirin powder or Acetyl salicylic acid powder.docx
kopalsharma85
Yoga Postures to Practice for Holistic (Physical, Mental, and Cognitive) Well...
Yoga Postures to Practice for Holistic (Physical, Mental, and Cognitive) Well...
Bhoj Raj Singh
Abdominal Radiology - x-rays of abdomen
Abdominal Radiology - x-rays of abdomen
Rahul Kadam
Tuberculosis burden , case finding tools and management .pptx
Tuberculosis burden , case finding tools and management .pptx
Dr. Anu Marhatta
Coarse Dispersion, Physical Pharmaceutics
Coarse Dispersion, Physical Pharmaceutics
nishiprakashj
From Wheals to Wellness: Transforming Chronic Spontaneous Urticaria Care With...
From Wheals to Wellness: Transforming Chronic Spontaneous Urticaria Care With...
PVI, PeerView Institute for Medical Education
Tooth paste - BDS.docx
Tooth paste - BDS.docx
kopalsharma85
Bias, Cofounding Bias, Matching , Blinding
Bias, Cofounding Bias, Matching , Blinding
Dr. Anu Marhatta
Mastering the Review Article: Structure, Strategy & Success
Mastering the Review Article: Structure, Strategy & Success
Rajendra Dev Bhatt
NUTRITION for basic Introduction and guide
NUTRITION for basic Introduction and guide
jrtrosales16
Viddha karma in Ayurveda-Dr Mahesh Kumar.pdf
Viddha karma in Ayurveda-Dr Mahesh Kumar.pdf
CBPACS, Khera Dabar, Najafgarh New Delhi- 73
Obstructive Sleep Apnea OSA [Autosaved].pdf
Obstructive Sleep Apnea OSA [Autosaved].pdf
Nehal mohamed
Navigating the Open Enrollment Period for Medicare Supplement Insurance in Sa...
Navigating the Open Enrollment Period for Medicare Supplement Insurance in Sa...
dfwdirectinsurance
15 malnutrition in children pediatrics 1.ppt
15 malnutrition in children pediatrics 1.ppt
BECKYCHEPNGENO
Quality by Design Tools in Pharmaceutical Manufacturing Technology
Quality by Design Tools in Pharmaceutical Manufacturing Technology
39KomalZaveri
PENICILINES AND THEIR MECHANISM OF ACTION .pptx
PENICILINES AND THEIR MECHANISM OF ACTION .pptx
PackialakshmiP
Severe Acute Respiratory Syndrome (SARS)
Severe Acute Respiratory Syndrome (SARS)
Dr. Anu Marhatta
Aspirin powder or Acetyl salicylic acid powder.docx
Aspirin powder or Acetyl salicylic acid powder.docx
kopalsharma85
Yoga Postures to Practice for Holistic (Physical, Mental, and Cognitive) Well...
Yoga Postures to Practice for Holistic (Physical, Mental, and Cognitive) Well...
Bhoj Raj Singh
Abdominal Radiology - x-rays of abdomen
Abdominal Radiology - x-rays of abdomen
Rahul Kadam
Tuberculosis burden , case finding tools and management .pptx
Tuberculosis burden , case finding tools and management .pptx
Dr. Anu Marhatta
Coarse Dispersion, Physical Pharmaceutics
Coarse Dispersion, Physical Pharmaceutics
nishiprakashj
Tooth paste - BDS.docx
Tooth paste - BDS.docx
kopalsharma85
Bias, Cofounding Bias, Matching , Blinding
Bias, Cofounding Bias, Matching , Blinding
Dr. Anu Marhatta
Mastering the Review Article: Structure, Strategy & Success
Mastering the Review Article: Structure, Strategy & Success
Rajendra Dev Bhatt
NUTRITION for basic Introduction and guide
NUTRITION for basic Introduction and guide
jrtrosales16
Obstructive Sleep Apnea OSA [Autosaved].pdf
Obstructive Sleep Apnea OSA [Autosaved].pdf
Nehal mohamed
Navigating the Open Enrollment Period for Medicare Supplement Insurance in Sa...
Navigating the Open Enrollment Period for Medicare Supplement Insurance in Sa...
dfwdirectinsurance
Ad

Big data breakthroughs in healthcare: from re-active to pro-active care

  • 1. Big Data breakthroughs in HealthCare: from re-active to pro-active care Dirk Van Hyfte MD, PhD
  • 3. Upwards of 80 95% of Healthcare Data Is Unstructured Patient complaints Notes, observations Theories, opinions Conclusions Unstructured Data Coded fields Values Lab results Structured Data
  • 6. Examples of the iKnow Text Analysis Breakthroughs in Action Intelligent EHR Navigation Patient Cohort ID Driving Actions with Real World Predictive Models Breakthrough Population Screening Finding Elusive Unknowns
  • 7. Driving actions with real world predictve models Early detection of Hepatitis C Seculsion Sepsis Delirium
  • 8. Early detection of Hepatitis C Injecting drug user Hiv Lft Acupuncture PiercingTattoo Prison stay Men having sex with men Household & sex partners of hep carriers Country of origin Transfusion before 1992
  • 9. Early detection of Seclusion
  • 11. HealthCare Journey Prevention of Hepatitis C Seculsion Sepsis Delirium Personalised Medicine Cancer therapy
  • 12. HealthCare Journey Prevention of Hepatitis C Seculsion Sepsis Delirium Personalised Medicine Cancer therapy proactivereactive
  • 13. Protocol design based on How long will the trial take? Will we be able to recruit the necessary volume of patients in order to collect data with sufficient statistical power to meet regulatory requirements? Where will we find sufficient numbers of the right patients? Do the inclusion/ex clusion criteria make sense?
  • 14. Protocol design based on How long will the trial take? Will we be able to recruit the necessary volume of patients in order to collect data with sufficient statistical power to meet regulatory requirements? Where will we find sufficient numbers of the right patients? Do the inclusion/ex clusion criteria make sense? Real World Clinical Data: both structured fields and clinical notes
  • 15. Healthcare & Life Science Journey Expert
  • 16. Healthcare & Life Science Journey ExpertData
  • 17. Healthcare & Life Science Journey ExpertData
  • 19. Overview Problem description Data Methods Results & conclusion Further Research
  • 20. Problem Is it possible to detect early: sudden patient deterioration or a delirium using nursing notes ?
  • 21. Data Delirium 3534 patients 1044 positive ( 29,54 %) Maximum of 4 days ahead / 4 consecutive days Sudden deterioration 1141 patients 391 positive ( 34,27 %) Maximum of 3 days ahead / 3 consecutive days
  • 22. Method (Anonymization) Feature extraction Document vector Classification
  • 23. Feature extraction I The old method: A bag-of-words Used in spam-filters Each occurring word is a feature A text is represented by tallying each word in that particular text
  • 24. Feature extraction II Using iKnow concepts (and relations)
  • 25. Document vector Feature - value matrix similar to the bag-of-words model (but smaller) Value = concept frequency - inverse document frequency Conce pt 1 Concept 2 Conc ept 3 <CRC> 1 (60k- 80k) Patient #1 0 1 1 / 3 0 Patient #2 0.5 0 1 / 3 1 Patient #3 0.5 0 1 / 3 0 Deterioration: 59590 distinct features Delirium: 80220 distinct features
  • 26. Classification Na誰eve Bayes Classificator (similar to spam-filtering) Support Vector Machines maximum margin separation
  • 27. Results I Delirium R1: AUC: 0.801 Prec: 0.769 R2: AUC: 0.784 Prec: 0.703 Deterioration R1: AUC: 0.823 Prec: 0.770 R2: AUC: 0.809 Prec: 0.764 Pos 0.578 Neg 0.849 Pos 0.758 Neg 0.681 Pos 0.476 Neg 0.923 Pos 0.627 Neg 0.836
  • 28. Results II (Dutch) Delirium 1. Erg gedesorienteerd 2. inco verschoond 3. dement 4. Heel onrustig 5. avond erg onrustig 6. onrustig dochter 7. alle tijden 8. iedere controle 9. helemaal duidelijk 10. vanavond onrustig 11. gedesorienteerd 12. vannacht onrustig 13. avond rustig aanwezig Deterioration 1. 60% Kapje 2. 100% Kapje 3. zieke indruk 4. 10 liter 5. spoed-ok 6. regelmatig uitgezogen 7. doorgebeld 8. 15 ltr 02 9. mayo tube 10. ademhalingsoefeningen 11. gespannen 12. hoge ademfrequentie 13. goed plat
  • 29. Further research More data! Less features by: - Latent semantic indexing - Autoencoders Adding structured data / other data / current prediction methods