『機械学習 (AI/ML) の基礎と Microsoft の AI | 2019/04/02 Global AI Nights FukuiFujio Kojima
?
2019/04/02 Global AI Nights Fukui
https://connpass.com/event/123614/
Global AI Nights - A free evening event to learn about Microsoft AI
https://global.ainights.com
#GlobalAINight #fukui
DB TechShowcase Tokyo - Intelligent Data PlatformDaiyu Hatakeyama
?
AI (Artificial Intelligence) が様々なアプリケーション/サービスに組み込まれ始めて、それをうみだす原動力ともいえるデータプラットフォームもその立ち位置を変えてきています。次期SQL Server 2017には、Machine Learning Servicesが同梱され、まさに次世代のデータプラットフォームの一つの形といえるでしょう。このセッションでは、System of Record から、System of Insight へとその価値を変えていく最新のData Platformの世界をご紹介します。
Shared Questionnaire System Development Projecthiroya
?
Shared Questionnaire System(SQS) is an integrated Optical Mark Reader(OMR) form processing system using XML standards.
SQS applications are opensource software, licensed upon Apache License, Version2.0. You can use, hack, and redistribute them freely.
You can use SQS easily. They run on JRE6, JavaWebStart Ready. You can install and launch them easily from your web browser.
『機械学習 (AI/ML) の基礎と Microsoft の AI | 2019/04/02 Global AI Nights FukuiFujio Kojima
?
2019/04/02 Global AI Nights Fukui
https://connpass.com/event/123614/
Global AI Nights - A free evening event to learn about Microsoft AI
https://global.ainights.com
#GlobalAINight #fukui
DB TechShowcase Tokyo - Intelligent Data PlatformDaiyu Hatakeyama
?
AI (Artificial Intelligence) が様々なアプリケーション/サービスに組み込まれ始めて、それをうみだす原動力ともいえるデータプラットフォームもその立ち位置を変えてきています。次期SQL Server 2017には、Machine Learning Servicesが同梱され、まさに次世代のデータプラットフォームの一つの形といえるでしょう。このセッションでは、System of Record から、System of Insight へとその価値を変えていく最新のData Platformの世界をご紹介します。
Shared Questionnaire System Development Projecthiroya
?
Shared Questionnaire System(SQS) is an integrated Optical Mark Reader(OMR) form processing system using XML standards.
SQS applications are opensource software, licensed upon Apache License, Version2.0. You can use, hack, and redistribute them freely.
You can use SQS easily. They run on JRE6, JavaWebStart Ready. You can install and launch them easily from your web browser.
21. 7/15_CVPR2020_技術報告会
1. Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu, Yilin Shen, Hongxia Jin, Zsolt Kira. CVPR 2020. https://arxiv.org/abs/2002.11297
2. Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
Shiyu Liang, Yixuan Li, R. Srikant. ICLR 2018. https://arxiv.org/abs/1706.02690
3. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks, Kevin Gimpel. https://arxiv.org/abs/1610.02136
4. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Nguyen, Jason Yosinski, Jeff Clune. https://arxiv.org/abs/1412.1897
20
参考文献