This document contains the step-by-step work and calculations to solve a heat transfer problem involving conduction between two surfaces at different temperatures. The key steps are:
1) An equation for conductive heat transfer is used to relate the temperature difference to the heat transfer coefficient, area, and thermal conductivity.
2) The temperature of the second surface, T2, is calculated to be 197.4°C.
3) Various parameters such as thickness, thermal conductivity, and temperatures are provided for the two surfaces.
Convert to study materialsBETA
Transform any presentation into ready-made study material—select from outputs like summaries, definitions, and practice questions.
1 of 1
Download to read offline
More Related Content
Ejercicio con funciones bessel
1. a) qcond = qconv
. -kA(T2-T1)/dx = h(Ts-Talr)A
Despejando para la temperatura
T2 - T1 = hdx(T2-Talr)/-k
T2 - 200 = (180)(0.004)(T2-8)/(-52)
T2 = 197,4 °C
Para R1
x = 0,9303 m = 18,6052 h = 180
I0(x) = 1,2283 R1 = 0,0500 k = 52
I1(x) = 0,5173 R2 = 0,1000 t = 0,02
K0(x) = 0,4656 T0 = 200
K1(x) = 0,6791 mR1 = 0,9303 Tamb = 8
2/piK0(x) = 0,2964 mR2 = 1,8605
2/piK1(x) = 0,4323
Para R2
x = 1,8605
I0(x) = 2,0716
I1(x) = 1,3952 b) Q = 1172,54
K0(x) = 0,1353 n = 0,79
K1(x) = 0,1683
2/piK0(x) = 0,0861
2/piK1(x) = 0,1072
Seufert GarcÃa Ofelia JasmÃn, Mecanismos
de Transferencia 2014.