際際滷

際際滷Share a Scribd company logo
The Parabolic Burning Curve
2008 GMRC
October 6-8, 2008
Albuquerque, NM
ACTT a Division of Compressor Engineering Corporation
www.classactt.com
Presented by: Randy L. Anderson
Introduction to the Parabolic
Burning Curve
 Peak firing pressure
 Different engines operations
 Emissions
 Engine balance
 Detonation
 Misfires
 Dead cylinders
 Flame front velocity
 Lower explosion limits
 Upper explosion limits
 Stoichiometric mixtures
Why is it so important?
 Simple to explain
 Straightforward
 Easy to remember
 Critical to mastering
combustion
characteristics in a
reciprocating engine
Opening Statement
 I have never been able to identify the original source of
this information. Whoever you were, thank you!
 This is not intended to be a synopsis of trapped
equivalence ratio, adiabatic flame temperatures or any
other study of the basic laws of thermodynamics but
rather a primer to help anyone understand the basic of
air-fuel ratio and its affect on combustion and an
instrument to help anyone to remember this information
forever.
 And most importantly, in 35 years it has never led me
astray.
Cornerstones
 It is based on a volumetric air-fuel ratio
 It is based on methane, CH4, with approximately
913 Btu (LHV)
 It is based on spark ignition and not a pre-
combustion chamber
 It is based on the stoichiometry of methane,
9.52:1 or 9.52 parts air to 1 part fuel
Why a Volumetric Curve?
Typical Natural Gas
Typical Composition of Natural Gas
Methane CH4 70-90%
Ethane C2H6
0-20%
Propane C3H8
Butane C4H10
Carbon Dioxide CO2 0-8%
Oxygen O2 0-0.2%
Nitrogen N2 0-5%
Hydrogen sulfide H2S 0-5%
Rare gases A, He, Ne, Xe trace
BTU of Various Gases
Methane CH4 913
Ethane C2H6 1636
Propane C3H8 2361
Iso-Butane C4H10 3103
N-Butane C4H10 3123
Iso-Pentane C5H12 3902
N-Pentane C5H12 3947
Hexane C6H14 5581
Carbon Dioxide CO2 0
Oxygen O2 0
Nitrogen N2 0
Changing Composition Changes BTU
Gas Symbol A B C D E
Methane CH4 94.0% 95.0% 94.0% 94.0% 94.0%
Ethane C2H6 4.0% 3.0% 3.0% 2.0% 3.0%
Propane C3H8 .6% .6% .6% .6% .6%
Iso-Butane C4H10 .1% .1% .1% .1% .1%
N-Butane C4H10 .1% .1% .1% .1% .1%
Iso-Pentane C5H12 .05% .05% .05% .05% .05%
N-Pentane C5H12 .05% .05% .05% .05% .05%
Hexane C6H14 .1% .1% .1% .1% 1.0%
Carbon Dioxide CO2
0% 0% 0% 0% 0%
Oxygen O2 0% 0% 0% 0% 0%
Nitrogen N2 1.0% 1.0% 2.0% 3.0% 3.0%
BTU
(LHV)
952.41 945.24
936.08
919.76 980.56
The Sunday BBQ or LEL and UEL
Ignition Temperatures (F)
Bituminous coal 572
Butane 788
Carbon 1292
Carbon monoxide 1128
Charcoal 660
Ethane 859
Gasoline 536
Iso-butane 864
Alcohol 750
Methane 1076
n-Butane 761
n-Heptane 419
n-Hexane 437
n-Pentane 500
Propane 842
UEL  LEL  Stoichiometric
by Volume and Weight
Air : Fuel Ratio by Volume Air : Fuel Ratio by Weight
UEL 了 LEL UEL 了 LEL
Methane CH4 5.64 9.52 18.97 10.20 17.22 34.30
Ethane
C2H
6 3.76 8.89 16.15 6.80 16.08 29.20
Propane
C3H
8 3.48 8.66 14.82 6.30 15.66 26.80
n-Butane
C4H
10 2.99 8.54 14.27 5.40 15.45 25.80
Volumetric Air Fuel Ratio
1:1
Air : Fuel Ratio
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
LEL, UEL and Stoichiometry of Methane
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
UEL, LEL and Stoichiometric for Ethane
1:1
Volumetric Air-Fuel Ratio
UEL =
3.76:1
Stoichiometric =
8.89:1
LEL =
16.15:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
UEL, LEL and Stoichiometric for Propane
1:1
Volumetric Air-Fuel Ratio
UEL =
3.48:1
Stoichiometric =
8.66:1
LEL =
14.82:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
UEL, LEL and Stoichiometric for n-Butane
1:1
Volumetric Air-Fuel Ratio
UEL =
2.99:1
Stoichiometric =
8.54:1
LEL =
14.27:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
Rich Versus Lean
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
LEAN SIDE
of
Stoichiometric
RICH
SIDE
Of
Stoichiometric
Volumetric Parabolic Burning Curve
Richening the Mixture
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Richening the mixture
Volumetric Parabolic Burning Curve
Leaning a Mixture
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Leaning the mixture
Fuel
Volumetric Parabolic Burning Curve
On the rich side of stoichiometric
what remains after combustion is fuel
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
O2
Volumetric Parabolic Burning Curve
On the lean side of stoichiometric what remains after combustion is O2
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
Rich Burn 4-Stroke Cycle Engines with or without NSCR
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
Lean Burn 4-Stroke Cycle with or without Oxidation Catalyst
and Standard 2-Stroke Cycle Engines
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
Lean Burn/Clean Burn 4 and 2- Stroke Engines
With Pre-Combustion Chambers
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
Volumetric Parabolic Burning Curve
Methane - 913 BTU (LHV)
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
200 BTU
400 BTU
600 BTU
800 BTU
1000 BTU
Volumetric Parabolic Burning Curve
Methane - 913 BTU (LHV)
1:1
Volumetric Air-Fuel Ratio
UEL =
5.64:1
Stoichiometric =
9.52:1
LEL =
18.96:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
200 BTU
400 BTU
600 BTU
800 BTU
1000 BTU
913 BTU
Volumetric Parabolic Burning Curve
Ethane - 1616 BTU (LHV)
1:1
Volumetric Air-Fuel Ratio
UEL =
3.76:1
Stoichiometric =
8.89:1
LEL =
16.15:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
300 BTU
600 BTU
900 BTU
1200 BTU
1500 BTU
1800 BTU
1616 BTU
Volumetric Parabolic Burning Curve
Propane (2335 BTU/LHV)
1:1
Volumetric Air-Fuel Ratio
UEL =
3.48:1
Stoichiometric =
8.66:1
LEL =
14.82:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
400 BTU
800 BTU
1200 BTU
1600 BTU
2000 BTU
2400 BTU
2335 BTU
Volumetric Parabolic Burning Curve
n-Butane - 3041 BTU (LHV)
1:1
Volumetric Air-Fuel Ratio
UEL =
2.99:1
Stoichiometric =
8.54:1
LEL =
14.27:1
2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
600 BTU
1200 BTU
1800 BTU
2400 BTU
3000 BTU
3600 BTU
3041 BTU
GMRC 2008 - The Parabolic Burning Curve.ppt
GMRC 2008 - The Parabolic Burning Curve.ppt
GMRC 2008 - The Parabolic Burning Curve.ppt
Peak Firing Pressure
 Highest pressure in a
power cylinder due to
combustion
Peak Firing Pressure
Flame Front Velocity
Peak Firing Pressure
Peak Firing Pressure
Peak Firing Pressure
Peak Firing Pressure
Ignition 10o
BTDC
0o
TDC
8o
BTDC
6o
BTDC
4o
BTDC
2o
BTDC
10o
ATDC
8o
ATDC
6o
ATDC
4o
ATDC
2o
ATDC
20o
ATDC
18o
ATDC
16o
ATDC
14o
ATDC
12o
ATDC
30o
ATDC
28o
ATDC
26o
ATDC
24o
ATDC
22o
ATDC
The faster the flame the earlier
peak firing pressure occurs 
the earlier peak firing pressure
occurs the higher the peak
Rich and Lean Misfires
GMRC 2008 - The Parabolic Burning Curve.ppt
The Parabolic Burning Curve
and
NOx and CO formation
 As combustion
temperature
increases NOx
increases, as
combustion
temperature
decreases CO
increases.
GMRC 2008 - The Parabolic Burning Curve.ppt
GMRC 2008 - The Parabolic Burning Curve.ppt
GMRC 2008 - The Parabolic Burning Curve.ppt
Warning!
I CANT TELL YOU WHERE YOURE GOING IF
YOU DONT KNOW WHERE YOU ARE.
 Not knowing where a specific
engine type runs on the curve
causes arguments on the
affects of rich and lean
mixtures. Richening a lean
mixture increases flame front
velocity, peak firing pressure
and NOx. Richening a rich
mixture decreases flame front
velocity, peak firing pressure
and NOx.
What does the parabolic burning
curve tell us?
 Upper explosion limit
 Lower explosion limit
 Stoichiometric
 Rich mixtures
 Lean mixtures
 Rich misfires
 Lean misfires
 Detonation
 Affects on flame front velocity
 Affects on peak firing pressure
 Affects emissions (NOx and CO)
 Where and why different engines
run in different parts of the curve
GMRC 2008 - The Parabolic Burning Curve.ppt

More Related Content

Similar to GMRC 2008 - The Parabolic Burning Curve.ppt (20)

Liquid Fuels 2
Liquid Fuels 2Liquid Fuels 2
Liquid Fuels 2
AhsanN2
Condition Monitoring of electrical machine
Condition Monitoring of electrical machine Condition Monitoring of electrical machine
Condition Monitoring of electrical machine
Molla Morshad
6 ta data sheet - flypartsguy.com - 8.2018
6 ta   data sheet - flypartsguy.com -  8.20186 ta   data sheet - flypartsguy.com -  8.2018
6 ta data sheet - flypartsguy.com - 8.2018
FrankEasel
Ion Science PID Response Factors UK V1.5
Ion Science PID Response Factors UK V1.5Ion Science PID Response Factors UK V1.5
Ion Science PID Response Factors UK V1.5
Lynda Robinson
Seminar presenation s8
Seminar presenation s8Seminar presenation s8
Seminar presenation s8
SACHINLAL007
295 tudu
295 tudu295 tudu
295 tudu
4th International Conference on Advances in Energy Research (ICAER) 2013
UWA Final Report 2014
UWA Final Report 2014UWA Final Report 2014
UWA Final Report 2014
T.Salim Shah
4 na data sheet - 2.2019
4 na   data sheet - 2.20194 na   data sheet - 2.2019
4 na data sheet - 2.2019
FrankEasel
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
rhysemo
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
rhysemo
Fuel
FuelFuel
Fuel
darpoly2000
NOX PDF
NOX PDFNOX PDF
NOX PDF
Sam Cutlan
Browning_Daimler Research Thesis_Summer 2015
Browning_Daimler Research Thesis_Summer 2015Browning_Daimler Research Thesis_Summer 2015
Browning_Daimler Research Thesis_Summer 2015
Eric Browning
131922673855140000.2Fuel-AirCycleandActualCycle (1).pdf
131922673855140000.2Fuel-AirCycleandActualCycle (1).pdf131922673855140000.2Fuel-AirCycleandActualCycle (1).pdf
131922673855140000.2Fuel-AirCycleandActualCycle (1).pdf
pradeepnalla830
Power plant performance_efficiency
Power plant performance_efficiencyPower plant performance_efficiency
Power plant performance_efficiency
Keyur Patel
NUMERICAL INVESTIGATION OF PERFORMANCE, COMBUSTION AND EMISSION OF VARIOUS BI...
NUMERICAL INVESTIGATION OF PERFORMANCE, COMBUSTION AND EMISSION OF VARIOUS BI...NUMERICAL INVESTIGATION OF PERFORMANCE, COMBUSTION AND EMISSION OF VARIOUS BI...
NUMERICAL INVESTIGATION OF PERFORMANCE, COMBUSTION AND EMISSION OF VARIOUS BI...
BuddhaDevKumar
L1302037480
L1302037480L1302037480
L1302037480
IOSR Journals
Unite conversion emision
Unite conversion emisionUnite conversion emision
Unite conversion emision
walled ashwah
Natural gas conversion pocketbook
Natural gas conversion pocketbookNatural gas conversion pocketbook
Natural gas conversion pocketbook
saivenkat74
82 jan-roger linna - 6913005 - system and methodology for purging fuel from...
82   jan-roger linna - 6913005 - system and methodology for purging fuel from...82   jan-roger linna - 6913005 - system and methodology for purging fuel from...
82 jan-roger linna - 6913005 - system and methodology for purging fuel from...
Mello_Patent_Registry
Liquid Fuels 2
Liquid Fuels 2Liquid Fuels 2
Liquid Fuels 2
AhsanN2
Condition Monitoring of electrical machine
Condition Monitoring of electrical machine Condition Monitoring of electrical machine
Condition Monitoring of electrical machine
Molla Morshad
6 ta data sheet - flypartsguy.com - 8.2018
6 ta   data sheet - flypartsguy.com -  8.20186 ta   data sheet - flypartsguy.com -  8.2018
6 ta data sheet - flypartsguy.com - 8.2018
FrankEasel
Ion Science PID Response Factors UK V1.5
Ion Science PID Response Factors UK V1.5Ion Science PID Response Factors UK V1.5
Ion Science PID Response Factors UK V1.5
Lynda Robinson
Seminar presenation s8
Seminar presenation s8Seminar presenation s8
Seminar presenation s8
SACHINLAL007
UWA Final Report 2014
UWA Final Report 2014UWA Final Report 2014
UWA Final Report 2014
T.Salim Shah
4 na data sheet - 2.2019
4 na   data sheet - 2.20194 na   data sheet - 2.2019
4 na data sheet - 2.2019
FrankEasel
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
rhysemo
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
rhysemo
Browning_Daimler Research Thesis_Summer 2015
Browning_Daimler Research Thesis_Summer 2015Browning_Daimler Research Thesis_Summer 2015
Browning_Daimler Research Thesis_Summer 2015
Eric Browning
131922673855140000.2Fuel-AirCycleandActualCycle (1).pdf
131922673855140000.2Fuel-AirCycleandActualCycle (1).pdf131922673855140000.2Fuel-AirCycleandActualCycle (1).pdf
131922673855140000.2Fuel-AirCycleandActualCycle (1).pdf
pradeepnalla830
Power plant performance_efficiency
Power plant performance_efficiencyPower plant performance_efficiency
Power plant performance_efficiency
Keyur Patel
NUMERICAL INVESTIGATION OF PERFORMANCE, COMBUSTION AND EMISSION OF VARIOUS BI...
NUMERICAL INVESTIGATION OF PERFORMANCE, COMBUSTION AND EMISSION OF VARIOUS BI...NUMERICAL INVESTIGATION OF PERFORMANCE, COMBUSTION AND EMISSION OF VARIOUS BI...
NUMERICAL INVESTIGATION OF PERFORMANCE, COMBUSTION AND EMISSION OF VARIOUS BI...
BuddhaDevKumar
Unite conversion emision
Unite conversion emisionUnite conversion emision
Unite conversion emision
walled ashwah
Natural gas conversion pocketbook
Natural gas conversion pocketbookNatural gas conversion pocketbook
Natural gas conversion pocketbook
saivenkat74
82 jan-roger linna - 6913005 - system and methodology for purging fuel from...
82   jan-roger linna - 6913005 - system and methodology for purging fuel from...82   jan-roger linna - 6913005 - system and methodology for purging fuel from...
82 jan-roger linna - 6913005 - system and methodology for purging fuel from...
Mello_Patent_Registry

Recently uploaded (20)

only history of java.pptx real bihind the name java
only history of java.pptx real bihind the name javaonly history of java.pptx real bihind the name java
only history of java.pptx real bihind the name java
mushtaqsaliq9
Mathematics_behind_machine_learning_INT255.pptx
Mathematics_behind_machine_learning_INT255.pptxMathematics_behind_machine_learning_INT255.pptx
Mathematics_behind_machine_learning_INT255.pptx
ppkmurthy2006
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVName.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
MerijimArsedelPalmad1
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptxGROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
meneememoo
IPC-9716_2024 Requirements for Automated Optical Inspection (AOI) Process Con...
IPC-9716_2024 Requirements for Automated Optical Inspection (AOI) Process Con...IPC-9716_2024 Requirements for Automated Optical Inspection (AOI) Process Con...
IPC-9716_2024 Requirements for Automated Optical Inspection (AOI) Process Con...
ssuserd9338b
CONTRACTOR ALL RISK INSURANCESAR (1).ppt
CONTRACTOR ALL RISK INSURANCESAR (1).pptCONTRACTOR ALL RISK INSURANCESAR (1).ppt
CONTRACTOR ALL RISK INSURANCESAR (1).ppt
suaktonny
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
NgocThang9
Indian Soil Classification System in Geotechnical Engineering
Indian Soil Classification System in Geotechnical EngineeringIndian Soil Classification System in Geotechnical Engineering
Indian Soil Classification System in Geotechnical Engineering
Rajani Vyawahare
Soil Properties and Methods of Determination
Soil Properties and  Methods of DeterminationSoil Properties and  Methods of Determination
Soil Properties and Methods of Determination
Rajani Vyawahare
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
Thane Heins NOBEL PRIZE WINNING ENERGY RESEARCHER
RAMSES- EDITORIAL SAMPLE FOR DSSPC C.pptx
RAMSES- EDITORIAL SAMPLE FOR DSSPC C.pptxRAMSES- EDITORIAL SAMPLE FOR DSSPC C.pptx
RAMSES- EDITORIAL SAMPLE FOR DSSPC C.pptx
JenTeruel1
Equipment for Gas Metal Arc Welding Process
Equipment for Gas Metal Arc Welding ProcessEquipment for Gas Metal Arc Welding Process
Equipment for Gas Metal Arc Welding Process
AhmadKamil87
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
J. Agricultural Machinery
Integration of Additive Manufacturing (AM) with IoT : A Smart Manufacturing A...
Integration of Additive Manufacturing (AM) with IoT : A Smart Manufacturing A...Integration of Additive Manufacturing (AM) with IoT : A Smart Manufacturing A...
Integration of Additive Manufacturing (AM) with IoT : A Smart Manufacturing A...
ASHISHDESAI85
Power Point Presentation for Electrical Engineering 3-phase.ppt
Power Point Presentation for Electrical Engineering 3-phase.pptPower Point Presentation for Electrical Engineering 3-phase.ppt
Power Point Presentation for Electrical Engineering 3-phase.ppt
Aniket_1415
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
slayshadow705
CFOT Fiber Optics FOA CERTIFICATION.pptx
CFOT Fiber Optics FOA CERTIFICATION.pptxCFOT Fiber Optics FOA CERTIFICATION.pptx
CFOT Fiber Optics FOA CERTIFICATION.pptx
MohamedShabana37
CS3451-OPERATING-SYSTEM NOTES ALL123.pdf
CS3451-OPERATING-SYSTEM NOTES ALL123.pdfCS3451-OPERATING-SYSTEM NOTES ALL123.pdf
CS3451-OPERATING-SYSTEM NOTES ALL123.pdf
PonniS7
UNIT 1FUNDAMENTALS OF OPERATING SYSTEMS.pptx
UNIT 1FUNDAMENTALS OF OPERATING SYSTEMS.pptxUNIT 1FUNDAMENTALS OF OPERATING SYSTEMS.pptx
UNIT 1FUNDAMENTALS OF OPERATING SYSTEMS.pptx
KesavanT10
Cyber Security_ Protecting the Digital World.pptx
Cyber Security_ Protecting the Digital World.pptxCyber Security_ Protecting the Digital World.pptx
Cyber Security_ Protecting the Digital World.pptx
Harshith A S
only history of java.pptx real bihind the name java
only history of java.pptx real bihind the name javaonly history of java.pptx real bihind the name java
only history of java.pptx real bihind the name java
mushtaqsaliq9
Mathematics_behind_machine_learning_INT255.pptx
Mathematics_behind_machine_learning_INT255.pptxMathematics_behind_machine_learning_INT255.pptx
Mathematics_behind_machine_learning_INT255.pptx
ppkmurthy2006
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVName.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
MerijimArsedelPalmad1
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptxGROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
meneememoo
IPC-9716_2024 Requirements for Automated Optical Inspection (AOI) Process Con...
IPC-9716_2024 Requirements for Automated Optical Inspection (AOI) Process Con...IPC-9716_2024 Requirements for Automated Optical Inspection (AOI) Process Con...
IPC-9716_2024 Requirements for Automated Optical Inspection (AOI) Process Con...
ssuserd9338b
CONTRACTOR ALL RISK INSURANCESAR (1).ppt
CONTRACTOR ALL RISK INSURANCESAR (1).pptCONTRACTOR ALL RISK INSURANCESAR (1).ppt
CONTRACTOR ALL RISK INSURANCESAR (1).ppt
suaktonny
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
NgocThang9
Indian Soil Classification System in Geotechnical Engineering
Indian Soil Classification System in Geotechnical EngineeringIndian Soil Classification System in Geotechnical Engineering
Indian Soil Classification System in Geotechnical Engineering
Rajani Vyawahare
Soil Properties and Methods of Determination
Soil Properties and  Methods of DeterminationSoil Properties and  Methods of Determination
Soil Properties and Methods of Determination
Rajani Vyawahare
RAMSES- EDITORIAL SAMPLE FOR DSSPC C.pptx
RAMSES- EDITORIAL SAMPLE FOR DSSPC C.pptxRAMSES- EDITORIAL SAMPLE FOR DSSPC C.pptx
RAMSES- EDITORIAL SAMPLE FOR DSSPC C.pptx
JenTeruel1
Equipment for Gas Metal Arc Welding Process
Equipment for Gas Metal Arc Welding ProcessEquipment for Gas Metal Arc Welding Process
Equipment for Gas Metal Arc Welding Process
AhmadKamil87
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
J. Agricultural Machinery
Integration of Additive Manufacturing (AM) with IoT : A Smart Manufacturing A...
Integration of Additive Manufacturing (AM) with IoT : A Smart Manufacturing A...Integration of Additive Manufacturing (AM) with IoT : A Smart Manufacturing A...
Integration of Additive Manufacturing (AM) with IoT : A Smart Manufacturing A...
ASHISHDESAI85
Power Point Presentation for Electrical Engineering 3-phase.ppt
Power Point Presentation for Electrical Engineering 3-phase.pptPower Point Presentation for Electrical Engineering 3-phase.ppt
Power Point Presentation for Electrical Engineering 3-phase.ppt
Aniket_1415
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
slayshadow705
CFOT Fiber Optics FOA CERTIFICATION.pptx
CFOT Fiber Optics FOA CERTIFICATION.pptxCFOT Fiber Optics FOA CERTIFICATION.pptx
CFOT Fiber Optics FOA CERTIFICATION.pptx
MohamedShabana37
CS3451-OPERATING-SYSTEM NOTES ALL123.pdf
CS3451-OPERATING-SYSTEM NOTES ALL123.pdfCS3451-OPERATING-SYSTEM NOTES ALL123.pdf
CS3451-OPERATING-SYSTEM NOTES ALL123.pdf
PonniS7
UNIT 1FUNDAMENTALS OF OPERATING SYSTEMS.pptx
UNIT 1FUNDAMENTALS OF OPERATING SYSTEMS.pptxUNIT 1FUNDAMENTALS OF OPERATING SYSTEMS.pptx
UNIT 1FUNDAMENTALS OF OPERATING SYSTEMS.pptx
KesavanT10
Cyber Security_ Protecting the Digital World.pptx
Cyber Security_ Protecting the Digital World.pptxCyber Security_ Protecting the Digital World.pptx
Cyber Security_ Protecting the Digital World.pptx
Harshith A S

GMRC 2008 - The Parabolic Burning Curve.ppt

  • 1. The Parabolic Burning Curve 2008 GMRC October 6-8, 2008 Albuquerque, NM ACTT a Division of Compressor Engineering Corporation www.classactt.com Presented by: Randy L. Anderson
  • 2. Introduction to the Parabolic Burning Curve Peak firing pressure Different engines operations Emissions Engine balance Detonation Misfires Dead cylinders Flame front velocity Lower explosion limits Upper explosion limits Stoichiometric mixtures
  • 3. Why is it so important? Simple to explain Straightforward Easy to remember Critical to mastering combustion characteristics in a reciprocating engine
  • 4. Opening Statement I have never been able to identify the original source of this information. Whoever you were, thank you! This is not intended to be a synopsis of trapped equivalence ratio, adiabatic flame temperatures or any other study of the basic laws of thermodynamics but rather a primer to help anyone understand the basic of air-fuel ratio and its affect on combustion and an instrument to help anyone to remember this information forever. And most importantly, in 35 years it has never led me astray.
  • 5. Cornerstones It is based on a volumetric air-fuel ratio It is based on methane, CH4, with approximately 913 Btu (LHV) It is based on spark ignition and not a pre- combustion chamber It is based on the stoichiometry of methane, 9.52:1 or 9.52 parts air to 1 part fuel
  • 7. Typical Natural Gas Typical Composition of Natural Gas Methane CH4 70-90% Ethane C2H6 0-20% Propane C3H8 Butane C4H10 Carbon Dioxide CO2 0-8% Oxygen O2 0-0.2% Nitrogen N2 0-5% Hydrogen sulfide H2S 0-5% Rare gases A, He, Ne, Xe trace
  • 8. BTU of Various Gases Methane CH4 913 Ethane C2H6 1636 Propane C3H8 2361 Iso-Butane C4H10 3103 N-Butane C4H10 3123 Iso-Pentane C5H12 3902 N-Pentane C5H12 3947 Hexane C6H14 5581 Carbon Dioxide CO2 0 Oxygen O2 0 Nitrogen N2 0
  • 9. Changing Composition Changes BTU Gas Symbol A B C D E Methane CH4 94.0% 95.0% 94.0% 94.0% 94.0% Ethane C2H6 4.0% 3.0% 3.0% 2.0% 3.0% Propane C3H8 .6% .6% .6% .6% .6% Iso-Butane C4H10 .1% .1% .1% .1% .1% N-Butane C4H10 .1% .1% .1% .1% .1% Iso-Pentane C5H12 .05% .05% .05% .05% .05% N-Pentane C5H12 .05% .05% .05% .05% .05% Hexane C6H14 .1% .1% .1% .1% 1.0% Carbon Dioxide CO2 0% 0% 0% 0% 0% Oxygen O2 0% 0% 0% 0% 0% Nitrogen N2 1.0% 1.0% 2.0% 3.0% 3.0% BTU (LHV) 952.41 945.24 936.08 919.76 980.56
  • 10. The Sunday BBQ or LEL and UEL
  • 11. Ignition Temperatures (F) Bituminous coal 572 Butane 788 Carbon 1292 Carbon monoxide 1128 Charcoal 660 Ethane 859 Gasoline 536 Iso-butane 864 Alcohol 750 Methane 1076 n-Butane 761 n-Heptane 419 n-Hexane 437 n-Pentane 500 Propane 842
  • 12. UEL LEL Stoichiometric by Volume and Weight Air : Fuel Ratio by Volume Air : Fuel Ratio by Weight UEL 了 LEL UEL 了 LEL Methane CH4 5.64 9.52 18.97 10.20 17.22 34.30 Ethane C2H 6 3.76 8.89 16.15 6.80 16.08 29.20 Propane C3H 8 3.48 8.66 14.82 6.30 15.66 26.80 n-Butane C4H 10 2.99 8.54 14.27 5.40 15.45 25.80
  • 13. Volumetric Air Fuel Ratio 1:1 Air : Fuel Ratio 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 14. Volumetric Parabolic Burning Curve LEL, UEL and Stoichiometry of Methane 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 15. Volumetric Parabolic Burning Curve UEL, LEL and Stoichiometric for Ethane 1:1 Volumetric Air-Fuel Ratio UEL = 3.76:1 Stoichiometric = 8.89:1 LEL = 16.15:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 16. Volumetric Parabolic Burning Curve UEL, LEL and Stoichiometric for Propane 1:1 Volumetric Air-Fuel Ratio UEL = 3.48:1 Stoichiometric = 8.66:1 LEL = 14.82:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 17. Volumetric Parabolic Burning Curve UEL, LEL and Stoichiometric for n-Butane 1:1 Volumetric Air-Fuel Ratio UEL = 2.99:1 Stoichiometric = 8.54:1 LEL = 14.27:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 18. Volumetric Parabolic Burning Curve Rich Versus Lean 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1 LEAN SIDE of Stoichiometric RICH SIDE Of Stoichiometric
  • 19. Volumetric Parabolic Burning Curve Richening the Mixture 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1 Richening the mixture
  • 20. Volumetric Parabolic Burning Curve Leaning a Mixture 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1 Leaning the mixture
  • 21. Fuel Volumetric Parabolic Burning Curve On the rich side of stoichiometric what remains after combustion is fuel 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 22. O2 Volumetric Parabolic Burning Curve On the lean side of stoichiometric what remains after combustion is O2 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 23. Volumetric Parabolic Burning Curve Rich Burn 4-Stroke Cycle Engines with or without NSCR 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 24. Volumetric Parabolic Burning Curve Lean Burn 4-Stroke Cycle with or without Oxidation Catalyst and Standard 2-Stroke Cycle Engines 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 25. Volumetric Parabolic Burning Curve Lean Burn/Clean Burn 4 and 2- Stroke Engines With Pre-Combustion Chambers 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1
  • 26. Volumetric Parabolic Burning Curve Methane - 913 BTU (LHV) 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1 200 BTU 400 BTU 600 BTU 800 BTU 1000 BTU
  • 27. Volumetric Parabolic Burning Curve Methane - 913 BTU (LHV) 1:1 Volumetric Air-Fuel Ratio UEL = 5.64:1 Stoichiometric = 9.52:1 LEL = 18.96:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1 200 BTU 400 BTU 600 BTU 800 BTU 1000 BTU 913 BTU
  • 28. Volumetric Parabolic Burning Curve Ethane - 1616 BTU (LHV) 1:1 Volumetric Air-Fuel Ratio UEL = 3.76:1 Stoichiometric = 8.89:1 LEL = 16.15:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1 300 BTU 600 BTU 900 BTU 1200 BTU 1500 BTU 1800 BTU 1616 BTU
  • 29. Volumetric Parabolic Burning Curve Propane (2335 BTU/LHV) 1:1 Volumetric Air-Fuel Ratio UEL = 3.48:1 Stoichiometric = 8.66:1 LEL = 14.82:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1 400 BTU 800 BTU 1200 BTU 1600 BTU 2000 BTU 2400 BTU 2335 BTU
  • 30. Volumetric Parabolic Burning Curve n-Butane - 3041 BTU (LHV) 1:1 Volumetric Air-Fuel Ratio UEL = 2.99:1 Stoichiometric = 8.54:1 LEL = 14.27:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 20:1 21:1 22:1 23:1 24:1 25:1 26:1 600 BTU 1200 BTU 1800 BTU 2400 BTU 3000 BTU 3600 BTU 3041 BTU
  • 34. Peak Firing Pressure Highest pressure in a power cylinder due to combustion Peak Firing Pressure
  • 35. Flame Front Velocity Peak Firing Pressure Peak Firing Pressure Peak Firing Pressure Peak Firing Pressure Ignition 10o BTDC 0o TDC 8o BTDC 6o BTDC 4o BTDC 2o BTDC 10o ATDC 8o ATDC 6o ATDC 4o ATDC 2o ATDC 20o ATDC 18o ATDC 16o ATDC 14o ATDC 12o ATDC 30o ATDC 28o ATDC 26o ATDC 24o ATDC 22o ATDC The faster the flame the earlier peak firing pressure occurs the earlier peak firing pressure occurs the higher the peak
  • 36. Rich and Lean Misfires
  • 38. The Parabolic Burning Curve and NOx and CO formation As combustion temperature increases NOx increases, as combustion temperature decreases CO increases.
  • 42. Warning! I CANT TELL YOU WHERE YOURE GOING IF YOU DONT KNOW WHERE YOU ARE. Not knowing where a specific engine type runs on the curve causes arguments on the affects of rich and lean mixtures. Richening a lean mixture increases flame front velocity, peak firing pressure and NOx. Richening a rich mixture decreases flame front velocity, peak firing pressure and NOx.
  • 43. What does the parabolic burning curve tell us? Upper explosion limit Lower explosion limit Stoichiometric Rich mixtures Lean mixtures Rich misfires Lean misfires Detonation Affects on flame front velocity Affects on peak firing pressure Affects emissions (NOx and CO) Where and why different engines run in different parts of the curve