際際滷

際際滷Share a Scribd company logo
The ways of node embedding
Node Embedding
? Goal : Efficient feature learning for ML
? Learned vectors can be used for
? Classification : SVM, Logistic Regression
? Clustering : K-means
? Link Prediction
Node Embedding
??? ?, ? 「 ???(?!, ?")
Node Embedding
? How to define Node Similarity?
Common Neighbors : |? ? ” ? ? |
Adamic-Adar Index : ‘ !( # $ ”# &
'
()* |# ! |
Jaccard Similarity :
# $ ”# &
# $ “# &
Node Embedding
? Why not??
? Unseen node -> how to embed?
? ?(|?|) parameters needed
? Cannot incorporate node features
? GCN
Neighborhood Aggregation
Neighborhood Aggregation
?!
"
= ?!
?!
#
= ?(?# '
$(& !
?$
#'(
|? ? |
+ ?#?!
#'(
)
Node embedding
We now introduce the ways of node embedding using idea of word embedding
DeepWalk : Online Learning of Social Representations
?? ??? ????? ____ ? ???
?? ???
???
???
????
?? ??? ????? ????.(CBOW)
? = ??????$ ??? ??, ? , ??? ???, ? , ???(???, ?)
DeepWalk : Online Learning of Social Representations
___ ??? ___
??? ???
??
???
????
????? ????? ????.(Skip-Gram)
? = ??????$ ??? ???, ?
DeepWalk : Online Learning of Social Representations
How can we make a sentence of nodes? Random Walk
Neighborhood preserving likelihood
Encoder-decoder structure
DeepWalk : Online Learning of Social Representations
DeepWalk : Online Learning of Social Representations
???, SkipGram?? ????? ??? ?? V??? ?? ???? Hierarchical Softmax
h? W? ??? softmax : O(N) -> infeasible
O(logN)
??? ?????
DeepWalk : Online Learning of Social Representations
Negative Sampling
??? ?? ?? : |V| -> K
DeepWalk : Online Learning of Social Representations
Pros :
1. Unseen data? ??? ????
2. Node/Edge feature ?? ??.
3. Node label ?? ??
Cons :
1. Unseen edge? ????
2. Local information ??
3. ???? ??
Node2vec: Scalable Feature Learning for Networks
The ways of node embedding

More Related Content

The ways of node embedding

  • 2. Node Embedding ? Goal : Efficient feature learning for ML ? Learned vectors can be used for ? Classification : SVM, Logistic Regression ? Clustering : K-means ? Link Prediction
  • 3. Node Embedding ??? ?, ? 「 ???(?!, ?")
  • 4. Node Embedding ? How to define Node Similarity? Common Neighbors : |? ? ” ? ? | Adamic-Adar Index : ‘ !( # $ ”# & ' ()* |# ! | Jaccard Similarity : # $ ”# & # $ “# &
  • 5. Node Embedding ? Why not?? ? Unseen node -> how to embed? ? ?(|?|) parameters needed ? Cannot incorporate node features ? GCN
  • 7. Neighborhood Aggregation ?! " = ?! ?! # = ?(?# ' $(& ! ?$ #'( |? ? | + ?#?! #'( )
  • 8. Node embedding We now introduce the ways of node embedding using idea of word embedding
  • 9. DeepWalk : Online Learning of Social Representations ?? ??? ????? ____ ? ??? ?? ??? ??? ??? ???? ?? ??? ????? ????.(CBOW) ? = ??????$ ??? ??, ? , ??? ???, ? , ???(???, ?)
  • 10. DeepWalk : Online Learning of Social Representations ___ ??? ___ ??? ??? ?? ??? ???? ????? ????? ????.(Skip-Gram) ? = ??????$ ??? ???, ?
  • 11. DeepWalk : Online Learning of Social Representations How can we make a sentence of nodes? Random Walk Neighborhood preserving likelihood Encoder-decoder structure
  • 12. DeepWalk : Online Learning of Social Representations
  • 13. DeepWalk : Online Learning of Social Representations ???, SkipGram?? ????? ??? ?? V??? ?? ???? Hierarchical Softmax h? W? ??? softmax : O(N) -> infeasible O(logN) ??? ?????
  • 14. DeepWalk : Online Learning of Social Representations Negative Sampling ??? ?? ?? : |V| -> K
  • 15. DeepWalk : Online Learning of Social Representations Pros : 1. Unseen data? ??? ???? 2. Node/Edge feature ?? ??. 3. Node label ?? ?? Cons : 1. Unseen edge? ???? 2. Local information ?? 3. ???? ??
  • 16. Node2vec: Scalable Feature Learning for Networks