Data analytics is used to make better business decisions by combining data and insights. There are four aspects to an effective data analytics framework: discovery, insights, actions, and outcomes. Discovery involves defining problems, developing hypotheses, and collecting relevant data. Insights are generated by exploring and analyzing the data. Actions link the insights to recommendations and plans. The desired outcomes are improved decisions and performance. Different types of analytics include descriptive (what happened), diagnostic (why), predictive (what could happen), and prescriptive (what should be done). Tools used include SQL, Hadoop, machine learning libraries, and optimization or simulation software.
2. List Of Topics
1. An Introduction to Data Analytics
2. The Data and Analytics Framework
3. Using Data to make decisions
3. 1. INTRODUCTION TO DATA ANALYTICS
Collection of facts
Can be structured & / or Unstructured
What is data?
Science of examining raw data impacting organizations
decisions
What is analytics?
Enabling new products and enabling new markets(e.g.
Uber, Careem)
Disrupting existing markets
Increased efficiency
Manage risks & drive innovation
How data analytics affecting business?
5. Solving Business Problems using Data Analytics
How to better combine the Art(i.e. intuition) and Science of Decision
Making?
Combining a more effective use of Data with the ability to extract
insights
Embedding analytics in the decision making culture
Case Scenario PwC Client: An airline with issue of Flight delays due to
maintenance
PwC prepares an Analytics model that predicts 30% maintenance delays
saving millions of dollars for client.
This analytical model uses:
1. Fleets Message Sensor Data
2. Maintenance log Information
6. Making Business-defining
decisions(BIG Decisions) using Data
Analytics
Organizations make day to day
operational decisions but they lack
clarity and speed needed for
Competitive advantage while
making BIG Decisions due to
circumstances beyond control such
as:
- Deadlines
- Technology
- Disruption
- Climate Change
BIG Decisions are critical as they
can shift the course of business or
industry and even shape the world
we live in.
PWC
Survey
Nearly 33%
executives value
their BIG Decisions
at $1 Billion +
50% executives
expect to make a
BIG decision at
least ONCE per
month
7. The Data and Analytics Framework
WHY NEED FRAMEWORK?
- Organized Data Analytics & Process of solving problems
-Focus on outcomes first enabling actions/decisions & Identify where value is generated
Conclusion: Structure of discussion with clients and follow path that leads to actionable insights
and business outcomes.
Discovery Decisions/Actions OutcomesInsights
4 Aspects of Data
Analytics
Framework
8. Discovery
Define the
problem
What is the key
opportunity?
Engage stakeholders
for perspective and
concerns
Develop
Hypotheses
Answer what is likely
to happen?
Use information from
stakeholders and other
knowledge to refine
hypotheses
Choose the hypothesis
for which the best data
exists
Collect
Data
Collect relevant
internal
and external data sets
Validate the accuracy
of
the data
Insights
Explore
Data
Explore data sets to
understand how they
would help in
accepting or refuting
the hypotheses
Analyze
Data
Use Qualitative and
Quantitative analysis
techniques to use
data to validate the
hypotheses
Convert outputs into
user friendly formats
and visualizations
that will help
different
stakeholders
understand the
analysis
Actions
Link Insights
Use actionable
data insights to
explain past
outcomes and
predict the future
landscape
Link insights to
financial and
operational metrics
to specify impact
and aid decision
making
Provide
Recommen
dations
Prioritize insights to
build actionable
plans
Provide solutions
that help business
to address future
challenges
Link Insights
Use actionable
data insights to
explain past
outcomes and
predict the future
landscape
Link insights to
financial and
operational
metrics to specify
impact and aid
decision making
Provide
Recommen
dations
Prioritize insights to
build actionable
plans
Provide solutions
that help business
to address future
challenges
Outcomes
9. TYPES OF ANALYTICS
It replies the question What has happened i.e. current and past
Descriptive Analytics
It replied the question Why it happened
Diagnostic Analytics
It replies the question What could happen in future
Predictive Analytics
It replied the question What should be done
Prescriptive Analytics
It replies the question How to adapt change
Adaptive/Autonomous Analytics