1. The document discusses sequences and series in mathematics.
2. It provides examples of sequences, such as the sequence 1, -1, 1, -1, ..., and discusses whether sequences converge or diverge.
3. It also examines various infinite series, testing whether they converge or diverge using tools like the Ratio Test.
Convert to study guideBETA
Transform any presentation into a summarized study guide, highlighting the most important points and key insights.
1 of 11
Download to read offline
More Related Content
Series
1. e.9.,
t, 5,7, ...,
t'
,Ir,
A sequence is a
nth term in. a sequence
'For examPle, if un
By
A
ls
a limit I then rrye r{rite
sequence,
e,g,; 7;
I
: l, -1,
A sbquence which
'.
3. l; -t, t, -1, ;., "
2. H"t:
H
L:
t:
,
r,
l
l'
I
t,
:
i,r .,
t.
;r'
l, :
1'.t20
Which bf.rhe
lnllnite
20.9
n+ PRO
Ans. Convergeiit :, ;
':l ' il:,
Anrl Divergent ,l
l- Th
.(
{i
2. If
REMEMBER THE20.6
(vD
0)
: (i,
(rv)
=.Ql
-Errl
.Seh
Sh.t
I*q(
&r
.0 for;all val.ues of .r
,lgglnl}r/' = -
'
limrx'=0if,r<ln+6
log a or' ./ ,
.i
,I
r 'l
.I
, ,, J
serii'i
I
,
Solt
': ,. H(
Er
calledls
a
)
5. 1f
Hence,,the given series is convergent when P > 1.
Case2:P=f
When p,= 1, the given seiies becomes
1
+-:.
1-
-+ t6
On adding (l), (2), (3) and (4), we get
given se-ries is
L=k
r1.P or
Proof. By definition of
both
posltivo
>m.,
,tli
:
i
l:
7. l.
${.j:,,;
' l:i., i.
,16
and non-zero,
;. Iun and Ivr, conveiie or
.'. Iy,
I
diverge together
..l
since f, v, , = )-a is of
. ..,. .n2.
1
2
: tl*r;.'"".r
1128 lnrirtite Series
)
ilo =
+l+
l+
Let us compare I zn wilh I Y, , where
-1- :':, i'
un
yn
I
l+
I
,.:,,
I
-n
++
1
I"€t
Iv" converg€ or
ylknPthe form withp+2>1-
8. nfirfite
' ' (M.9:U:.2ooo)
Here, we have ralt:i i .
J
..
r.'i,r.l
.r:.:,1r. fj
",,. l'.. .: 2._+_+
l+2-t l+Z-2
5
___+...
l+2''
He;e ilr=
Let us compare
'Examplc 12. Exanine the
Solution. Her"e, we have
r'ilr
I".,
= lim
}'+4.
uilx.iJl ,,
Arr
*.,r- ;l
r-t/t*;
n
I
?r = _T:
n2,
I
n
lnfinite Series
Here ,.
1179
Ans.'
i form f, a
,r
.f,.ii ,.'i
(M.D.U.'2oAJ)
Solution.
',. ; .
!$.1 .
4o=
l+
: ', '-,
9. EXERCISE 20.5
Examinc lhe converBence or divergencc of the follbwing series: ,
,- , * 3a * 1.* * q.+ *.... Ans. convergent
" -. 2'4 3 42 4 43
1.2 7.2.3 7.2.3.4'
...@ Ans. convergent2' 1+
13
*
r33
*
l-:.s.2
lnfinite Series
.1
D'
$ 2n3 +,5
*r4" t
iAne.Convergent
t,i..:
_ril il, ' ' . -,,r i.
1231
-+-+-+...@
-' 1.2 3.4 5.6
111/ L+-+-*.........@
'' r,2.3 2.3.4 3.4.5
1 131,
Ans.,Diverginti' I 'r'
Ans. Convergent .(M.D. IJniversity' Dec' 2004)
t:
'. . Ans, Convergent
'ti
Ans, ConveJgent
.,
Ans. Convergent'
.+
22
ol,[.
"afiE&
,5.
6.
:,
I
= ,,('
+
I
Jr+{r+1
.an
3t
+
Divergent
> a, convergenl; il x 3 a, DivergentAns. If r
9.
Ans. Cunvergent
R]TTIO TEST
6_',
12. Z r/{n' * t; - n ', Ans Divergent'
. A!rs. lo"pyergent
r ',,r::",, '
.. l:r r
iaTl
Ans.
2n +
T;14. Ir.l
15. 16. L;n,.1r
(l +r
Strtcmcnl. Il2 ur ls a PositUe lerm thcnel
(t) thc seiles ls
8.
11.
13.
10. itr.l 4'+no
+J;L-n2 +l,.1
Casc
By'
I
I
I
j
i
,
i
I
j
Convergent
=k
,,:, {
'.::
t
.+..., @
ll2
t *-,'l .
i