際際滷

際際滷Share a Scribd company logo
CH働NG I. MA TR畉N  畛NH TH畛C  H畛 PH働NG
                            TRNH TUY畉N TNH
則1. KHI NI畛M V畛 MA TR畉N
Bi 1: Th畛c hi畛n c叩c ph辿p t鱈nh sau

       1    3                                                 1                  4
                                                     1 1 0 2                    
         6   5  2 11 5                    1 2 3          2                 1
    1.                                4.         0 1 1 0
       0    0  7 3 2                   3 0 4 1 0 2 1 3                     2
                                                             4                  
       2    3                                                                    3
                  4                        cos     sin  
                                                                  n

        2 1 1                       5.                         (n    , 0   < 2 )
    2.         2 (1 2)                     sin    cos  
        1 2 1  
                  
                  0

        1 an
         0 1  , a  R v n 
     3.      
             
                2 1
Bi 2: Cho A =       v f ( x ) = 3x + 2 x  4 . T鱈nh f ( A) .
                                       2

                0 3
Bi 3:
                                             x y  x          6   4   x + y
   1. T狸m c叩c s畛 th畛c x, y , z , w sao cho 3        =          +          .
                                              z w   1 2 w   z + w     3 
                                                                   2 1
   2. T狸m t畉t c畉 c叩c ma tr畉n c畉p 2 giao ho叩n v畛i ma tr畉n A =          .
                                                                   0 1
                            1 1 3         2 2
                                                       2 1 2 
Bi 4: Cho c叩c ma tr畉n A =  1 2 2  , B =  1 2  , C =           . T鱈nh C B A .
                                                                              t t t

                            2 2 5         3 2          2 3 1
                                               
Bi 5: T狸m ma tr畉n X trong c叩c tr動畛ng h畛p sau
         2 1  3 2  1 2
   1.        . X.    =     
         4 5  5 3  3 4
       2 1           1 1  1 1 
   2.      . X  X .       =    
       1 2           1 1   1 1
       1 2 2         3 5      1 5
                                  
   3.  2 5 4 X -     7 6 = 3  2 2
                                  
       2 4 5         2 1      2 1
則2. 畛NH TH畛C
Bi 6: T鱈nh c叩c 畛nh th畛c sau 但y

        7 6 5                                    2 3 4                              1 2 3 4
   1.   1 2 1                            2.     5 6 7                              2 3 4 1
                                                                               3.
        3 2 2                                   8 9 1                              3 4 1 4
                                                                                    4 1 2 3

        1 2 3 4                                  a+x  x           x                 x2 + 1         xy         xz
        2 3 4 1                           5.      x  b+x          x           6.     xy           y +1
                                                                                                  2
                                                                                                         yz
   4.
        3 4 1 4                                   x      x    c+x                    xz            yz  z +1
                                                                                                        2

        4 1 2 3

Bi 7: T鱈nh c叩c 畛nh th畛c c畉p n sau 但y
        1 2 3 ....... n  1 n                                   1     2     3           .......   n 1      n
        1 0 3 ....... n  1 n                                   2     2     3           .......   n 1      n
        1 2 0 ........ n  1 n                                  3     3     3           .......   n 1      n
   1.                                                    3.
        ......................................                 .... ..... .....         .......   .......   ...
        1 2 3 ............ 0 n                                n 1 n 1 n 1            .......   n 1      n
        1 2 3 ........ n  1 0                                  n     n     n           .......      n      n

        1     1     1    .......      1          1
                                                              x       a   a         a
        1     2     2    .......      2          2
                                                              a       x   a         a
        1     2     3    .......      3          3
   3.                                                    4.   a       a   x         a
        ... ... ... ....... .... ....
        1 2 3 ....... n  1 n  1
                                                              a       a   a         x
        1 2 3 ....... n  1       n

Bi 8:Gi畉i c叩c ph動董ng tr狸nh sau 但y
       1 x x 2 x3
                                                              x   x +1 x + 2
      1 2         4     8
   1.                      =0                            2. x + 3 x + 4 x + 5 = 0
      1 3         9     27
                                                            x+6 x+7 x+8
        1 4 16 64




則3. H畉NG C畛A MA TR畉N
Bi 9: T狸m h畉ng c畛a c叩c ma tr畉n sau
 1 3 5 1
                                                     2 1       3 2 4 
   1.   2 1 3 4                                   
                                                  2.  4 2        5 1 7
                                                                          
        5 1 1 7                                     2 1
                                                                1 8 2 
        7 7 9 1
        0 2 4 
                                                     2 4       3 1       0
        1 4 5                                     
                                                        1 2       1 4
                                                                              
                                                                             2
   3.  3 1        7                             3. 
                                                    0 1         1 3      1
        0 5 10                                                            
       2 3                                           1 7       4 4      5
                  0 
Bi 10: T湛y theo tham s畛 m , h達y t狸m h畉ng c畛a c叩c ma tr畉n sau
        1 2 3                                       3 1         1   4
                                                                     
   1.   4 5 6                                   2. 
                                                        2 2        4   3
        7 8 9                                       m 4        10   1
                                                                     
       10 m 12                                      1 7        17   3
                        m 1 1 1 
                                  
Bi 11: Cho ma tr畉n A =  1 m 1 m  . T狸m m 畛 r ( A) < 3 .
                         1 1 1 m2 
                                  

則4. MA TR畉N NGH畛CH 畉O

Bi 12: T狸m ma tr畉n ngh畛ch 畉o c畛a c叩c ma tr畉n sau 但y b畉ng ph動董ng ph叩p bi畉n 畛i s董
c畉p
       1 0 3                 1 3 2                     1 3 5
                                                               
    1.  2 1 1            2.  2 1 3                  3.  5 0 1 
        3 2 2                3 2 1                     3 1 0
                                                               
       1 2 0 1                2 1 0 2                  1 1 0 0
                                                                  
    4. 1 1 2 0           5.   2 2 1 0               6. 0 1 1 0
        0 1 1 2              0 2 2 1                   0 0 1 1
                                                                  
       2 0 1 1                1 0 2 2                  1 0 0 1


則5. H畛 PH働NG TRNH TUY畉N TNH
Bi 13: Gi畉i c叩c h畛 ph動董ng tr狸nh tuy畉n t鱈nh sau
       ァ x1  2x 2 + x 3 + 2x 4 = 1             ァ x1 + 3x 2 + 5 x3 + x 4 = 0
       ェ                                        ェ
   1. ィ x 1 + x 2  x 3 + x 4 = 2            2. ィ 4 x1  7 x 2  3x3  x 4 = 0
       ェx + 7x  5x  x = 0                     ェ3x + 2 x + 7 x + 8 x = 0
       ゥ 1       2      3     4                 ゥ 1        2       3      4
Bi 14: Gi畉i v bi畛n lu畉n c叩c h畛 ph動董ng tr狸nh sau
ァmx + y   +z = 1                                 ァ x         + y + (1  m )z = m + 2
      ェ                                                ェ
   1. ィ x + my + z = m                              2. ィ(1 + m )x  y      +2 z    =   0
      ェ x  + y + mz = m 2                              ェ 2x        my     +3z     = m+2
      ゥ                                                ゥ
                                                       ァ x1     +3x 2    +2 x 3   +4 x 4   =   1
      ァx 1     2 x 2   +x 3     +2 x 4    =  1        ェ2 x
      ェ                                                ェ 1      +5x 2    +2 x 3   +9 x 4   =   1
   3. ィx 1     +x 2     x 3     +x 4      =  m 4.     ィ
      ェx       +7x 2    5x 3    x 4      = 4m        ェ x1     +5x 2    +6 x 3   + mx 4   =   3
      ゥ 1                                              ェ x1     +3x 2    +4 x 3   +3x 4    =   2
                                                       ゥ
                                                       ァ x1     +2 x 2   x3      =   2
      ァ 2x1  x 2 + x 3 + x 4 = 1                      ェ2 x
      ェ                                                ェ 1      3x 2    +7x 3    = 1
   5. ィ x 1 + 2 x 2  x 3 + 4 x 4 = 2               6. ィ
      ェx + 7x  4 x + 11x = m                          ェ x 1   +x 2     +3x 3    =   6
      ゥ 1       2      3         4
                                                       ェ 5x 1   +x 2     +2 x 3   =   m
                                                       ゥ
      ァ x1     +2 x 2   +3x 3     + mx 4       =    m+2
      ェx       +x 2     +x 3      + mx 4       =    m +1
      ェ 1
      ェ
   7. ィ2 x 1   +3x 2    +4 x 3   +2 mx 4       =   2m + 3
      ェ3 x     +4 x 2   +2 x 3   +3mx 4        =   3m + 1
      ェ 1
      ェ x1
      ゥ        +x 2     +2 x 3   +2 mx 4       = m2 + m + 2
                              ァmx      +y          +z     =  m
                              ェ
Bi 15: Cho h畛 ph動董ng tr狸nh ィ 2 x + (1 + m )y + (1 + m )z = m  1 . T狸m tham s畛 m
                              ェ x      +y        + mz     =  1
                              ゥ
畛 h畛 ph動董ng tr狸nh tr棚n c坦 nghi畛m.
                             ァax 3y + z = 2
                             ェ
Bi 16: Cho h畛 ph動董ng tr狸nh ィax + y +2 z = 3 (I), trong 坦 a, b l tham s畛.
                             ェ3x +2 y + z = b
                             ゥ
   1. X叩c 畛nh a, b 畛 h畛 (I) l h畛 Cramer. Khi 坦 h達y t狸m nghi畛m c畛a h畛 theo a, b .
   2. T狸m a, b 畛 h畛 (I) v担 nghi畛m.
   3. T狸m a, b 畛 h畛 (I) c坦 v担 s畛 nghi畛m v t狸m nghi畛m t畛ng qu叩t c畛a h畛.
                                                 ァ x 1  3x 2 + 4 x 3  x 4 = 0
                                                 ェ
                                                 ェ2 x1 + x 2  2 x 3 + 2 x 4 = 0
Bi 17: T狸m h畛 nghi畛m c董 b畉n c畛a h畛 ph動董ng tr狸nh ィ                                .
                                                 ェ3x1  2 x 2 + 2 x 3 + x 4 = 0
                                                 ェ x 1 + 4 x 2  6 x 3 + 3x 4 = 0
                                                 ゥ

More Related Content

Bai tap ma tran dinh thuc-hpt - bookbooming

  • 1. CH働NG I. MA TR畉N 畛NH TH畛C H畛 PH働NG TRNH TUY畉N TNH 則1. KHI NI畛M V畛 MA TR畉N Bi 1: Th畛c hi畛n c叩c ph辿p t鱈nh sau 1 3 1 4 1 1 0 2 6 5 2 11 5 1 2 3 2 1 1. 4. 0 1 1 0 0 0 7 3 2 3 0 4 1 0 2 1 3 2 4 2 3 3 4 cos sin n 2 1 1 5. (n , 0 < 2 ) 2. 2 (1 2) sin cos 1 2 1 0 1 an 0 1 , a R v n 3. 2 1 Bi 2: Cho A = v f ( x ) = 3x + 2 x 4 . T鱈nh f ( A) . 2 0 3 Bi 3: x y x 6 4 x + y 1. T狸m c叩c s畛 th畛c x, y , z , w sao cho 3 = + . z w 1 2 w z + w 3 2 1 2. T狸m t畉t c畉 c叩c ma tr畉n c畉p 2 giao ho叩n v畛i ma tr畉n A = . 0 1 1 1 3 2 2 2 1 2 Bi 4: Cho c叩c ma tr畉n A = 1 2 2 , B = 1 2 , C = . T鱈nh C B A . t t t 2 2 5 3 2 2 3 1 Bi 5: T狸m ma tr畉n X trong c叩c tr動畛ng h畛p sau 2 1 3 2 1 2 1. . X. = 4 5 5 3 3 4 2 1 1 1 1 1 2. . X X . = 1 2 1 1 1 1 1 2 2 3 5 1 5 3. 2 5 4 X - 7 6 = 3 2 2 2 4 5 2 1 2 1 則2. 畛NH TH畛C
  • 2. Bi 6: T鱈nh c叩c 畛nh th畛c sau 但y 7 6 5 2 3 4 1 2 3 4 1. 1 2 1 2. 5 6 7 2 3 4 1 3. 3 2 2 8 9 1 3 4 1 4 4 1 2 3 1 2 3 4 a+x x x x2 + 1 xy xz 2 3 4 1 5. x b+x x 6. xy y +1 2 yz 4. 3 4 1 4 x x c+x xz yz z +1 2 4 1 2 3 Bi 7: T鱈nh c叩c 畛nh th畛c c畉p n sau 但y 1 2 3 ....... n 1 n 1 2 3 ....... n 1 n 1 0 3 ....... n 1 n 2 2 3 ....... n 1 n 1 2 0 ........ n 1 n 3 3 3 ....... n 1 n 1. 3. ...................................... .... ..... ..... ....... ....... ... 1 2 3 ............ 0 n n 1 n 1 n 1 ....... n 1 n 1 2 3 ........ n 1 0 n n n ....... n n 1 1 1 ....... 1 1 x a a a 1 2 2 ....... 2 2 a x a a 1 2 3 ....... 3 3 3. 4. a a x a ... ... ... ....... .... .... 1 2 3 ....... n 1 n 1 a a a x 1 2 3 ....... n 1 n Bi 8:Gi畉i c叩c ph動董ng tr狸nh sau 但y 1 x x 2 x3 x x +1 x + 2 1 2 4 8 1. =0 2. x + 3 x + 4 x + 5 = 0 1 3 9 27 x+6 x+7 x+8 1 4 16 64 則3. H畉NG C畛A MA TR畉N Bi 9: T狸m h畉ng c畛a c叩c ma tr畉n sau
  • 3. 1 3 5 1 2 1 3 2 4 1. 2 1 3 4 2. 4 2 5 1 7 5 1 1 7 2 1 1 8 2 7 7 9 1 0 2 4 2 4 3 1 0 1 4 5 1 2 1 4 2 3. 3 1 7 3. 0 1 1 3 1 0 5 10 2 3 1 7 4 4 5 0 Bi 10: T湛y theo tham s畛 m , h達y t狸m h畉ng c畛a c叩c ma tr畉n sau 1 2 3 3 1 1 4 1. 4 5 6 2. 2 2 4 3 7 8 9 m 4 10 1 10 m 12 1 7 17 3 m 1 1 1 Bi 11: Cho ma tr畉n A = 1 m 1 m . T狸m m 畛 r ( A) < 3 . 1 1 1 m2 則4. MA TR畉N NGH畛CH 畉O Bi 12: T狸m ma tr畉n ngh畛ch 畉o c畛a c叩c ma tr畉n sau 但y b畉ng ph動董ng ph叩p bi畉n 畛i s董 c畉p 1 0 3 1 3 2 1 3 5 1. 2 1 1 2. 2 1 3 3. 5 0 1 3 2 2 3 2 1 3 1 0 1 2 0 1 2 1 0 2 1 1 0 0 4. 1 1 2 0 5. 2 2 1 0 6. 0 1 1 0 0 1 1 2 0 2 2 1 0 0 1 1 2 0 1 1 1 0 2 2 1 0 0 1 則5. H畛 PH働NG TRNH TUY畉N TNH Bi 13: Gi畉i c叩c h畛 ph動董ng tr狸nh tuy畉n t鱈nh sau ァ x1 2x 2 + x 3 + 2x 4 = 1 ァ x1 + 3x 2 + 5 x3 + x 4 = 0 ェ ェ 1. ィ x 1 + x 2 x 3 + x 4 = 2 2. ィ 4 x1 7 x 2 3x3 x 4 = 0 ェx + 7x 5x x = 0 ェ3x + 2 x + 7 x + 8 x = 0 ゥ 1 2 3 4 ゥ 1 2 3 4 Bi 14: Gi畉i v bi畛n lu畉n c叩c h畛 ph動董ng tr狸nh sau
  • 4. ァmx + y +z = 1 ァ x + y + (1 m )z = m + 2 ェ ェ 1. ィ x + my + z = m 2. ィ(1 + m )x y +2 z = 0 ェ x + y + mz = m 2 ェ 2x my +3z = m+2 ゥ ゥ ァ x1 +3x 2 +2 x 3 +4 x 4 = 1 ァx 1 2 x 2 +x 3 +2 x 4 = 1 ェ2 x ェ ェ 1 +5x 2 +2 x 3 +9 x 4 = 1 3. ィx 1 +x 2 x 3 +x 4 = m 4. ィ ェx +7x 2 5x 3 x 4 = 4m ェ x1 +5x 2 +6 x 3 + mx 4 = 3 ゥ 1 ェ x1 +3x 2 +4 x 3 +3x 4 = 2 ゥ ァ x1 +2 x 2 x3 = 2 ァ 2x1 x 2 + x 3 + x 4 = 1 ェ2 x ェ ェ 1 3x 2 +7x 3 = 1 5. ィ x 1 + 2 x 2 x 3 + 4 x 4 = 2 6. ィ ェx + 7x 4 x + 11x = m ェ x 1 +x 2 +3x 3 = 6 ゥ 1 2 3 4 ェ 5x 1 +x 2 +2 x 3 = m ゥ ァ x1 +2 x 2 +3x 3 + mx 4 = m+2 ェx +x 2 +x 3 + mx 4 = m +1 ェ 1 ェ 7. ィ2 x 1 +3x 2 +4 x 3 +2 mx 4 = 2m + 3 ェ3 x +4 x 2 +2 x 3 +3mx 4 = 3m + 1 ェ 1 ェ x1 ゥ +x 2 +2 x 3 +2 mx 4 = m2 + m + 2 ァmx +y +z = m ェ Bi 15: Cho h畛 ph動董ng tr狸nh ィ 2 x + (1 + m )y + (1 + m )z = m 1 . T狸m tham s畛 m ェ x +y + mz = 1 ゥ 畛 h畛 ph動董ng tr狸nh tr棚n c坦 nghi畛m. ァax 3y + z = 2 ェ Bi 16: Cho h畛 ph動董ng tr狸nh ィax + y +2 z = 3 (I), trong 坦 a, b l tham s畛. ェ3x +2 y + z = b ゥ 1. X叩c 畛nh a, b 畛 h畛 (I) l h畛 Cramer. Khi 坦 h達y t狸m nghi畛m c畛a h畛 theo a, b . 2. T狸m a, b 畛 h畛 (I) v担 nghi畛m. 3. T狸m a, b 畛 h畛 (I) c坦 v担 s畛 nghi畛m v t狸m nghi畛m t畛ng qu叩t c畛a h畛. ァ x 1 3x 2 + 4 x 3 x 4 = 0 ェ ェ2 x1 + x 2 2 x 3 + 2 x 4 = 0 Bi 17: T狸m h畛 nghi畛m c董 b畉n c畛a h畛 ph動董ng tr狸nh ィ . ェ3x1 2 x 2 + 2 x 3 + x 4 = 0 ェ x 1 + 4 x 2 6 x 3 + 3x 4 = 0 ゥ