This document summarizes a microservices meetup hosted by @mosa_siru. Key points include:
1. @mosa_siru is an engineer at DeNA and CTO of Gunosy.
2. The meetup covered Gunosy's architecture with over 45 GitHub repositories, 30 stacks, 10 Go APIs, and 10 Python batch processes using AWS services like Kinesis, Lambda, SQS and API Gateway.
3. Challenges discussed were managing 30 microservices, ensuring API latency below 50ms across availability zones, and handling 10 requests per second with nginx load balancing across 20 servers.
ArcFace: Additive Angular Margin Loss for Deep Face Recognitionharmonylab
?
出典: Jiankang Deng, Jia Guo, Niannan Xue, Stefanos Zafeiriou : ArcFace: Additive Angular Margin Loss for Deep Face Recognition, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2019)
公開URL:https://arxiv.org/abs/1801.07698
概要 : 顔認識のための畳み込みニューラルネットワーク(DCNN)の課題は識別力を高める適切な損失関数を設計することです。本論文では、顔認識のための識別性の高い特徴量を得るために、Additive Angular Margin Loss (ArcFace)を提案します。一般的な顔認識ベンチマークから1兆ペアの大規模データセットなどを用いて、最先端顔認識技術との比較実験を行いました。結果は、従来手法を凌駕する精度を持つことが明らかになりました。
This document summarizes a microservices meetup hosted by @mosa_siru. Key points include:
1. @mosa_siru is an engineer at DeNA and CTO of Gunosy.
2. The meetup covered Gunosy's architecture with over 45 GitHub repositories, 30 stacks, 10 Go APIs, and 10 Python batch processes using AWS services like Kinesis, Lambda, SQS and API Gateway.
3. Challenges discussed were managing 30 microservices, ensuring API latency below 50ms across availability zones, and handling 10 requests per second with nginx load balancing across 20 servers.
ArcFace: Additive Angular Margin Loss for Deep Face Recognitionharmonylab
?
出典: Jiankang Deng, Jia Guo, Niannan Xue, Stefanos Zafeiriou : ArcFace: Additive Angular Margin Loss for Deep Face Recognition, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2019)
公開URL:https://arxiv.org/abs/1801.07698
概要 : 顔認識のための畳み込みニューラルネットワーク(DCNN)の課題は識別力を高める適切な損失関数を設計することです。本論文では、顔認識のための識別性の高い特徴量を得るために、Additive Angular Margin Loss (ArcFace)を提案します。一般的な顔認識ベンチマークから1兆ペアの大規模データセットなどを用いて、最先端顔認識技術との比較実験を行いました。結果は、従来手法を凌駕する精度を持つことが明らかになりました。
Protect Your IoT Data with UbiBot's Private Platform.pptxユビボット 株式会社
?
Our on-premise IoT platform offers a secure and scalable solution for businesses, with features such as real-time monitoring, customizable alerts and open API support, and can be deployed on your own servers to ensure complete data privacy and control.