ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
3
Most read
4
Most read
5
Most read
Euler-Fermat theorem
Dr. Kuparala Venkata
Vidyasagar
Lecturer in Mathematics
SVLNS Govt. Degree
College,
Bheemunipatnam
LEARNING OUTCOMES
?Fermat¡¯s theorem
?Corollary ON Fermat¡¯s theorem
?Set of residues modulo ?
?Reduced set of residues modulo ?
?Theorems based on residue modulo m
?Euler's theorem or Euler's generalization of
Fermat's theorem
?Fermat's theorem from Euler's theorem
?Examples
Fermat¡¯s theorem
Statement: If. ? is a prime and (?, ?) = 1 then ???1 ¡Ô
1 mod?
proof. Given that ? is a prime and (?, ?) = 1
claim: ???1
¡Ô 1(mod?)
Since (?, ?) = 1 By known theorem
When the numbers ?, 2?, 3? ¡­ (? ? 1)? are derided by p,
remainders are 1,2,3,¡­.. p-1 not necessarily in this order
??? ? ¡Ô ?1(mod?)
2? ¡Ô ?2(mod?)
(? ? 1)? ¡Ô ???1(mod?)
But ?1, ?2; ???1 are also remainders obtained by dividing
?, 2?, ? (? ? 1)? by ?
¡à ?1, ?2, ? ???1 ¡Ô 1 ? 2 ? 3 ? (? ? 1) ? (1)
From the above congruent relations
But ?1, ?2; ???1 are also remainders obtained by dividing
?, 2?, ? (? ? 1)? by ?
¡à ?1, ?2, ? ???1 ¡Ô 1 ? 2 ? 3 ? (? ? 1) ? (1)
From the above congruent relations
(? ? 1)! ???1 ¡Ô (? ? 1)! (modp)
Since, ? is prime
(?, 1) = 1, (?, 2) = 1 ¡­ (?, ? ? 1) = 1
? (?, (? ? 1)!) = 1
??1 ¡Ô 1(mod?)
Hence the proof
If ? is a prime and a is any integer then
??
¡Ô ?(mod?)
Case (i). Let (?, ?) ¡Ù 1
? ? ¨O ? and
? ¡Ô 0 mod?
????? ??
¡Ô 0(mod?)
and 0 ¡Ô ?(mod?)
By Transitive property
??
¡Ô ? ??? ?
case(ii):
Let (?, ?) = 1
By Fermat's theorem
???1
¡Ô 1(mod?)
??
?
1
?
¡Ô 1(mod?)
??
¡Ô ?(mod?)
Hence the proof
¡ú If ? is prime and (?, ?) = 1 then ???1 ? 1 = ?(?)
Definition1.: A Set of integers ?0, ?1, ?2, ? ???1 is
called a set of residues modulo ? if each ??(? =
0,1,2, ? ? ? 1) belongs to one and only one residue class
modulo.
Definition2.: A Set of integers ?1, ?2 ¡­ , ???) is called a
reduced set of residues modulo ? if exactly one of them,
lies in each, residue class relatively prime to ?,
Eg: {1,5} is a reduced set of residues modulo 6
= {0,1,2,3,4,5}
(¡ß (1,6) = 1, (5; 6) = 1)
¡ú ?(?) is the number of elements in every reduced Set
of residues modulo ?.
THEOREM: If ?1, ?2, ¡­ ??(?), is a set of reduced residue modulo ?
and (?, ?) = 1 then ??1, ??2, ¡­ ???(?) is also a set of reduced
residue modulo ?.
Given that ?1, ?2, ¡­ ??(?) is a set of
reduced residue modulo ? and
(?, ?) = 1
The
set ??1, ??2, ¡­ ???(?,} ??? ?(?)
elements
Since ?1, ?2, ¡­ ??(?}, is a reduced
Set of residues modulo ?.
? Each ??(? = 1,2, ¡­ ? ?(?)) is
relatively prime to ?
i.e. ??, ? = 1 for ? = 1,2 ¡­ ?(?)
Since ?, ? = 1, ??, ? = 1
? ???
, ? = 1 for ? = 1,2, ¡­ ?(?)
¡à Each a?? is relatively prime to ?
Suppose two of the numbers
???
, ??? are Congruent
??? ¡Ô ??
?(mod?)
? ?? ¡Ô ?
?(mod?) (¡ß (?, ?) = 1)
This is impossible
¡ß ??, ?? are two members of
reduced Set of residues modulo m
{they are incongruent)
no two elements a??, a?
? are
congruent
Hence ??1, ??2, ¡­ ar ?(?1 is also reduced set of residues modulo m.
Euler's theorem (Euler's generalization of Fermat's theorem)
Statement: If (?, ?) = 1 then ? ¡Ô
?(?)
1(mod?)
Proof: Given that (?, ?) = 1
Claim: ? ¡Ô
?(?)
1(mod?)
Let ?1, ?2, ¡­ ??(?,? be a
reduced set of
residues modulo ?
Since(?, ?) = 1,
By known theorem
??, ??2, ¡­ ar?(?}
is also reduced set
of residues modulo ?.
¡à Each a?i is congruent modulo ?
to one and only one ??
??? ??1
¡Ô ?1(modm)
??2 ¡Ô ?2(modm)
???? ?
???(?) ¡Ô ??(?)(modm)
Multiplying the above congruence
??1, ??2 ¡­ ???(?) ¡Ô ?1 ? ?2 ? ??(?)(modm)
? ?1 ? ?2 ? ?? ? ? a^?(?) ¡Ô ?1 ? ?2 ¡­ ??(?(modm)
? ?1 ? ?2 ¡­ ?? ? a^?(?) ¡Ô ?1?2 ¡­ ??(?)(modm)
¡ß ?1, ?2; ??(?), are precisely numbers ?1 ? ?2 ¡­ ??(?)
? a ¡Ô
?(?)
1(mod ?)
¡ß ?1, ?2 ¡­ ?? ? , 1 = 1
Hence the proof
Derive Fermat's theorem from Euler's
theorem
corollary: If ? = ? and ? ¡Ô
?(?)
(mod?) Then
???1
¡Ô 1(mod?)
proof:
If ? = ? is a prime
?(?) = ? ? 1
Since ?
?(?)
¡Ô 1(modp)(?? Euler's theorem)
? ???1
¡Ô 1(mod?)
Hence the proof
Question: What is the last digit in the ordinary decimal
representation of 3400
?
Solution: The last digit in the ordinary decimal representation of
3400
is the remainders when 3400
is divided by 10
By division algorithm 3400 ¡Ô 10q + ? where q, ? ¡Ê ? and 0 ?
? < 10
¡à ? is the last digit such that
3400 = 10q + ?
3400
¡Ô ?(mod10)
We have to find ? such that
3400 ¡Ô ?(mod10)
Since 5 is prime (3,5) = 1
By Fermat's theorem
35?1
¡Ô 1(mod5)
34 ¡Ô 1(mod5) ? (1)
Since 2 is prime and (3,2) = 1
By fermat' theorem
32?1
¡Ô 1(mod2)
31 ¡Ô 1(mod2)
34 ¡Ô 14(mod2) ? (2)
From (1) & (2) , 34
¡Ô 1 (mod of
L.C.M of 5,2 )
)
34
¡Ô 1(mod 10
34 100
¡Ô 1100
(mod10)
3400
¡Ô 1(mod10)
? = 1
Hence the last digit =1.
Euler-Fermat theorem.pptx

More Related Content

What's hot (20)

PDF
3.4 Composition of Functions
smiller5
?
PPTX
Algebraic expressions and equations
Christian Costa
?
PPT
2.8 a absolute value functions
fthrower
?
PDF
Lesson 3: The Limit of a Function
Matthew Leingang
?
PPT
Points, Lines & Planes Powerpoint
knoxbaggett
?
PDF
Lesson 9: The Product and Quotient Rule
Matthew Leingang
?
PPT
Distributive property in algebra power point
Christie Harp
?
PPTX
Rep¨¦rage Classe EB7
Maths avec TOMKO
?
PPT
CLASS X MATHS LINEAR EQUATIONS
Rc Os
?
PPTX
Gauss Elimination & Gauss Jordan Methods in Numerical & Statistical Methods
Janki Shah
?
PPTX
Exponential and logarithmic functions
Njabulo Nkabinde
?
PPTX
Linear equations in two variables
VivekNaithani3
?
PPT
Factoring by grouping ppt
Doreen Mhizha
?
PPT
CBSE Class XI Maths Linear inequalities
Pranav Ghildiyal
?
PDF
Function of several variables
Kamel Attar
?
PPT
Absolute value functions
Jessica Garcia
?
PPTX
solving quadratic equations by graphing
Hind Al Awadi
?
PPTX
¶ÙÉϤÎévÊý¤Î¼«‚ޤÎÎÊÌâ
nabeshimamasataka
?
PPTX
Principle of mathematical induction
Kriti Varshney
?
DOCX
Examen du 2 semestre eb7
zeinabze
?
3.4 Composition of Functions
smiller5
?
Algebraic expressions and equations
Christian Costa
?
2.8 a absolute value functions
fthrower
?
Lesson 3: The Limit of a Function
Matthew Leingang
?
Points, Lines & Planes Powerpoint
knoxbaggett
?
Lesson 9: The Product and Quotient Rule
Matthew Leingang
?
Distributive property in algebra power point
Christie Harp
?
Rep¨¦rage Classe EB7
Maths avec TOMKO
?
CLASS X MATHS LINEAR EQUATIONS
Rc Os
?
Gauss Elimination & Gauss Jordan Methods in Numerical & Statistical Methods
Janki Shah
?
Exponential and logarithmic functions
Njabulo Nkabinde
?
Linear equations in two variables
VivekNaithani3
?
Factoring by grouping ppt
Doreen Mhizha
?
CBSE Class XI Maths Linear inequalities
Pranav Ghildiyal
?
Function of several variables
Kamel Attar
?
Absolute value functions
Jessica Garcia
?
solving quadratic equations by graphing
Hind Al Awadi
?
¶ÙÉϤÎévÊý¤Î¼«‚ޤÎÎÊÌâ
nabeshimamasataka
?
Principle of mathematical induction
Kriti Varshney
?
Examen du 2 semestre eb7
zeinabze
?

Similar to Euler-Fermat theorem.pptx (20)

PPTX
Euler's Theorem and Fermat's Theorem.pptx
rojansebastian1
?
PPT
wilson's and fermat little theorem .ppt
JayLagman3
?
PPT
Ch08
nathanurag
?
PPTX
ppt-number-theory-fermats-theorem_(2).pptx
MarjorieEstuita1
?
PPTX
Cryptography Modular Arithmetic and their application.pptx
MushfiqUlHaque6
?
PDF
modul pembelajaran 4
Ajrina Pia
?
PPT
CRYPTOGRAPHY AND NUMBER THEORY, he ha huli
harshmacduacin
?
PDF
The 2 Goldbach's Conjectures with Proof
nikos mantzakouras
?
PDF
On a Diophantine Proofs of FLT: The First Case and the Secund Case z¡Ô0 (mod p...
mathsjournal
?
PDF
Number Theory for Security
Abhijit Mondal
?
PDF
Number theory
cherrymer molina
?
PDF
Proof of Beal's conjecture
nikos mantzakouras
?
PPTX
Fermat and euler theorem
Janani S
?
PPTX
Linear Congruences, reduced residue systems.pptx
Kuparala Vidyasagar
?
PDF
Infinite Sequences of Primes of Form 4n-1 and 4n+1
inventionjournals
?
PDF
Number theory lecture (part 2)
Aleksandr Yampolskiy
?
PPT
Unit 3.ppt
DHANABALSUBRAMANIAN
?
PDF
CHAPTER final.pdf
vivek827170
?
Euler's Theorem and Fermat's Theorem.pptx
rojansebastian1
?
wilson's and fermat little theorem .ppt
JayLagman3
?
ppt-number-theory-fermats-theorem_(2).pptx
MarjorieEstuita1
?
Cryptography Modular Arithmetic and their application.pptx
MushfiqUlHaque6
?
modul pembelajaran 4
Ajrina Pia
?
CRYPTOGRAPHY AND NUMBER THEORY, he ha huli
harshmacduacin
?
The 2 Goldbach's Conjectures with Proof
nikos mantzakouras
?
On a Diophantine Proofs of FLT: The First Case and the Secund Case z¡Ô0 (mod p...
mathsjournal
?
Number Theory for Security
Abhijit Mondal
?
Number theory
cherrymer molina
?
Proof of Beal's conjecture
nikos mantzakouras
?
Fermat and euler theorem
Janani S
?
Linear Congruences, reduced residue systems.pptx
Kuparala Vidyasagar
?
Infinite Sequences of Primes of Form 4n-1 and 4n+1
inventionjournals
?
Number theory lecture (part 2)
Aleksandr Yampolskiy
?
CHAPTER final.pdf
vivek827170
?
Ad

Recently uploaded (20)

PPTX
Elo the Hero is an story about a young boy who became hero.
TeacherEmily1
?
PPTX
JSON, XML and Data Science introduction.pptx
Ramakrishna Reddy Bijjam
?
PDF
Lesson 1 : Science and the Art of Geography Ecosystem
marvinnbustamante1
?
PDF
Gladiolous Cultivation practices by AKL.pdf
kushallamichhame
?
PPTX
How to use grouped() method in Odoo 18 - Odoo ºÝºÝߣs
Celine George
?
PPTX
How to Manage Wins & Losses in Odoo 18 CRM
Celine George
?
PPTX
A Case of Identity A Sociological Approach Fix.pptx
Ismail868386
?
PDF
THE PSYCHOANALYTIC OF THE BLACK CAT BY EDGAR ALLAN POE (1).pdf
nabilahk908
?
PDF
COM and NET Component Services 1st Edition Juval L?wy
kboqcyuw976
?
PPTX
Urban Hierarchy and Service Provisions.pptx
Islamic University of Bangladesh
?
PPTX
Peer Teaching Observations During School Internship
AjayaMohanty7
?
DOCX
MUSIC AND ARTS 5 DLL MATATAG LESSON EXEMPLAR QUARTER 1_Q1_W1.docx
DianaValiente5
?
DOCX
DLL english grade five goof for one week
FlordelynGonzales1
?
PPTX
How to Configure Refusal of Applicants in Odoo 18 Recruitment
Celine George
?
PPTX
F-BLOCK ELEMENTS POWER POINT PRESENTATIONS
mprpgcwa2024
?
PPTX
Tanja Vujicic - PISA for Schools contact Info
EduSkills OECD
?
PDF
Free eBook ~100 Common English Proverbs (ebook) pdf.pdf
OH TEIK BIN
?
PPTX
Martyrs of Ireland - who kept the faith of St. Patrick.pptx
Martin M Flynn
?
PDF
Supply Chain Security A Comprehensive Approach 1st Edition Arthur G. Arway
rxgnika452
?
PPTX
How to Configure Taxes in Company Currency in Odoo 18 Accounting
Celine George
?
Elo the Hero is an story about a young boy who became hero.
TeacherEmily1
?
JSON, XML and Data Science introduction.pptx
Ramakrishna Reddy Bijjam
?
Lesson 1 : Science and the Art of Geography Ecosystem
marvinnbustamante1
?
Gladiolous Cultivation practices by AKL.pdf
kushallamichhame
?
How to use grouped() method in Odoo 18 - Odoo ºÝºÝߣs
Celine George
?
How to Manage Wins & Losses in Odoo 18 CRM
Celine George
?
A Case of Identity A Sociological Approach Fix.pptx
Ismail868386
?
THE PSYCHOANALYTIC OF THE BLACK CAT BY EDGAR ALLAN POE (1).pdf
nabilahk908
?
COM and NET Component Services 1st Edition Juval L?wy
kboqcyuw976
?
Urban Hierarchy and Service Provisions.pptx
Islamic University of Bangladesh
?
Peer Teaching Observations During School Internship
AjayaMohanty7
?
MUSIC AND ARTS 5 DLL MATATAG LESSON EXEMPLAR QUARTER 1_Q1_W1.docx
DianaValiente5
?
DLL english grade five goof for one week
FlordelynGonzales1
?
How to Configure Refusal of Applicants in Odoo 18 Recruitment
Celine George
?
F-BLOCK ELEMENTS POWER POINT PRESENTATIONS
mprpgcwa2024
?
Tanja Vujicic - PISA for Schools contact Info
EduSkills OECD
?
Free eBook ~100 Common English Proverbs (ebook) pdf.pdf
OH TEIK BIN
?
Martyrs of Ireland - who kept the faith of St. Patrick.pptx
Martin M Flynn
?
Supply Chain Security A Comprehensive Approach 1st Edition Arthur G. Arway
rxgnika452
?
How to Configure Taxes in Company Currency in Odoo 18 Accounting
Celine George
?
Ad

Euler-Fermat theorem.pptx

  • 1. Euler-Fermat theorem Dr. Kuparala Venkata Vidyasagar Lecturer in Mathematics SVLNS Govt. Degree College, Bheemunipatnam
  • 2. LEARNING OUTCOMES ?Fermat¡¯s theorem ?Corollary ON Fermat¡¯s theorem ?Set of residues modulo ? ?Reduced set of residues modulo ? ?Theorems based on residue modulo m ?Euler's theorem or Euler's generalization of Fermat's theorem ?Fermat's theorem from Euler's theorem ?Examples
  • 3. Fermat¡¯s theorem Statement: If. ? is a prime and (?, ?) = 1 then ???1 ¡Ô 1 mod? proof. Given that ? is a prime and (?, ?) = 1 claim: ???1 ¡Ô 1(mod?) Since (?, ?) = 1 By known theorem When the numbers ?, 2?, 3? ¡­ (? ? 1)? are derided by p, remainders are 1,2,3,¡­.. p-1 not necessarily in this order ??? ? ¡Ô ?1(mod?) 2? ¡Ô ?2(mod?) (? ? 1)? ¡Ô ???1(mod?) But ?1, ?2; ???1 are also remainders obtained by dividing ?, 2?, ? (? ? 1)? by ? ¡à ?1, ?2, ? ???1 ¡Ô 1 ? 2 ? 3 ? (? ? 1) ? (1) From the above congruent relations
  • 4. But ?1, ?2; ???1 are also remainders obtained by dividing ?, 2?, ? (? ? 1)? by ? ¡à ?1, ?2, ? ???1 ¡Ô 1 ? 2 ? 3 ? (? ? 1) ? (1) From the above congruent relations (? ? 1)! ???1 ¡Ô (? ? 1)! (modp) Since, ? is prime (?, 1) = 1, (?, 2) = 1 ¡­ (?, ? ? 1) = 1 ? (?, (? ? 1)!) = 1 ??1 ¡Ô 1(mod?) Hence the proof
  • 5. If ? is a prime and a is any integer then ?? ¡Ô ?(mod?) Case (i). Let (?, ?) ¡Ù 1 ? ? ¨O ? and ? ¡Ô 0 mod? ????? ?? ¡Ô 0(mod?) and 0 ¡Ô ?(mod?) By Transitive property ?? ¡Ô ? ??? ? case(ii): Let (?, ?) = 1 By Fermat's theorem ???1 ¡Ô 1(mod?) ?? ? 1 ? ¡Ô 1(mod?) ?? ¡Ô ?(mod?) Hence the proof ¡ú If ? is prime and (?, ?) = 1 then ???1 ? 1 = ?(?)
  • 6. Definition1.: A Set of integers ?0, ?1, ?2, ? ???1 is called a set of residues modulo ? if each ??(? = 0,1,2, ? ? ? 1) belongs to one and only one residue class modulo. Definition2.: A Set of integers ?1, ?2 ¡­ , ???) is called a reduced set of residues modulo ? if exactly one of them, lies in each, residue class relatively prime to ?, Eg: {1,5} is a reduced set of residues modulo 6 = {0,1,2,3,4,5} (¡ß (1,6) = 1, (5; 6) = 1) ¡ú ?(?) is the number of elements in every reduced Set of residues modulo ?.
  • 7. THEOREM: If ?1, ?2, ¡­ ??(?), is a set of reduced residue modulo ? and (?, ?) = 1 then ??1, ??2, ¡­ ???(?) is also a set of reduced residue modulo ?. Given that ?1, ?2, ¡­ ??(?) is a set of reduced residue modulo ? and (?, ?) = 1 The set ??1, ??2, ¡­ ???(?,} ??? ?(?) elements Since ?1, ?2, ¡­ ??(?}, is a reduced Set of residues modulo ?. ? Each ??(? = 1,2, ¡­ ? ?(?)) is relatively prime to ? i.e. ??, ? = 1 for ? = 1,2 ¡­ ?(?) Since ?, ? = 1, ??, ? = 1 ? ??? , ? = 1 for ? = 1,2, ¡­ ?(?) ¡à Each a?? is relatively prime to ? Suppose two of the numbers ??? , ??? are Congruent ??? ¡Ô ?? ?(mod?) ? ?? ¡Ô ? ?(mod?) (¡ß (?, ?) = 1) This is impossible ¡ß ??, ?? are two members of reduced Set of residues modulo m {they are incongruent) no two elements a??, a? ? are congruent Hence ??1, ??2, ¡­ ar ?(?1 is also reduced set of residues modulo m.
  • 8. Euler's theorem (Euler's generalization of Fermat's theorem) Statement: If (?, ?) = 1 then ? ¡Ô ?(?) 1(mod?) Proof: Given that (?, ?) = 1 Claim: ? ¡Ô ?(?) 1(mod?) Let ?1, ?2, ¡­ ??(?,? be a reduced set of residues modulo ? Since(?, ?) = 1, By known theorem ??, ??2, ¡­ ar?(?} is also reduced set of residues modulo ?. ¡à Each a?i is congruent modulo ? to one and only one ?? ??? ??1 ¡Ô ?1(modm) ??2 ¡Ô ?2(modm) ???? ? ???(?) ¡Ô ??(?)(modm) Multiplying the above congruence ??1, ??2 ¡­ ???(?) ¡Ô ?1 ? ?2 ? ??(?)(modm) ? ?1 ? ?2 ? ?? ? ? a^?(?) ¡Ô ?1 ? ?2 ¡­ ??(?(modm) ? ?1 ? ?2 ¡­ ?? ? a^?(?) ¡Ô ?1?2 ¡­ ??(?)(modm) ¡ß ?1, ?2; ??(?), are precisely numbers ?1 ? ?2 ¡­ ??(?) ? a ¡Ô ?(?) 1(mod ?) ¡ß ?1, ?2 ¡­ ?? ? , 1 = 1 Hence the proof
  • 9. Derive Fermat's theorem from Euler's theorem corollary: If ? = ? and ? ¡Ô ?(?) (mod?) Then ???1 ¡Ô 1(mod?) proof: If ? = ? is a prime ?(?) = ? ? 1 Since ? ?(?) ¡Ô 1(modp)(?? Euler's theorem) ? ???1 ¡Ô 1(mod?) Hence the proof
  • 10. Question: What is the last digit in the ordinary decimal representation of 3400 ? Solution: The last digit in the ordinary decimal representation of 3400 is the remainders when 3400 is divided by 10 By division algorithm 3400 ¡Ô 10q + ? where q, ? ¡Ê ? and 0 ? ? < 10 ¡à ? is the last digit such that 3400 = 10q + ? 3400 ¡Ô ?(mod10) We have to find ? such that 3400 ¡Ô ?(mod10) Since 5 is prime (3,5) = 1 By Fermat's theorem 35?1 ¡Ô 1(mod5) 34 ¡Ô 1(mod5) ? (1) Since 2 is prime and (3,2) = 1 By fermat' theorem 32?1 ¡Ô 1(mod2) 31 ¡Ô 1(mod2) 34 ¡Ô 14(mod2) ? (2) From (1) & (2) , 34 ¡Ô 1 (mod of L.C.M of 5,2 ) ) 34 ¡Ô 1(mod 10 34 100 ¡Ô 1100 (mod10) 3400 ¡Ô 1(mod10) ? = 1 Hence the last digit =1.