6. Nice モデル : 軌道不安定と後期重爆撃
2:1 MMR
U
N
U
N
S
J
S
J
2 4 6 80
経過時間 (1千万年)
(Tsiganis+05)
軌道長半径,遠点,近点(AU)
5
10
15
20
25
30
木星と土星が 2:1 平均運動共鳴(MMR)を経験(通過)
→ 木星と土星 : eccentricな軌道
→ 4巨大惑星系の軌道不安定を誘発
(c) Yasunori Hori
7. Nice モデル : 軌道不安定と後期重爆撃
(Bottke+12)
軌道長半径 (AU)
離心率
before 5000万年後
(Gomes+05)x(AU)
y(AU)y(AU)
before
不安定化直後
【コンパクトな巨大惑星系の軌道不安定】
→ 小惑星帯/TNOs領域の天体をかき乱す
→ 数億年の期間、後期重爆撃
(c) Yasunori Hori
8. 惑星落下問題
Type I migration(M < 10M+)
等温円盤での migration による落下が速すぎる
?→ 原始惑星が円盤内に生き残れない(Tanaka et al., 2002)
Type II migration(M > 50M+)
惑星重力により gap を形成し、円盤降着とともに落下
?→ a > 1AU にガス惑星を残せない(Hasegawa & Ida, 2013)
Type III migration(M 30M+)
Corotation torque の positive feedback
?→ 超高速移動&向きが予測不可能(Masset & Papaloizou, 2003)
9. PAIRS OF PLANETS
PPVI – Planet-disc interactions: Outward migration. 27 / 37
Migration scheme changes if the two planets open a common gap.
Standard type II :
outer discinner disc
M2<M1 => smaller negative torque from outer disk than positive
torque from inner disc (Masset & Snellgrove 2001).
The pair goes outwards, even if the disc goes inwards.
outer discinner disc
Common gap + resonance locking case :
[Crida s talk]
10. The Grand Tack Model
Time
Semimajoraxis
Jupiter
Saturn
Capture in
Resonance
Gas disk starts to dissipate
Jupiter and Saturn in the gaseous di
slide by K
See t
A. C
Masset & S
Morbidelli
Pierens &
Pierens & R
[Raymond s talk]
Type II migration
Type III migration
14. Particle concentration regions
0.1
1
10
100
AU
MRI
DZE
EF
SI
BI
SI
PGE
DZE
MRI
GIMRI = magnetorotational instability
DZE = dead zone edge
SI = streaming instability
BI = baroclinic instability
EF = evaporation front (snow line)
PG = planet gap edge
GI = gravitational instability
(MRI: Johansen et al., 2009a; DZE: Lyra et al., 2008b; SI: Youdin & Goodman, 2005; SI: Johansen & Youdin 2007;
BI: Klahr & Bodenheimer, 2003; BI: Lesur & Papaloizou, 2010; EF: Kretke & Lin, 2007; PGE: Lyra et al., 2009;
GI: Rice et al., 2004)
Planetesimal formation (Johansen et al.) 21 / 27
[Johansen s talk]
15. Local Planet Formation Model
!?%I1995,:,uniform,disk,w/o,orbital,migraDon,
!?,1995I,:,uniform,disk,with,orbital,migraDon,
!?,New,idea:,nonIuniform,disk,
,,,,,,,,,,,,,,,,,,,,,,,start,from,2,narrow,disk,regions??,
,,,,,,,,,,,,,,,,,,,,,,,,migraDon,trap?,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,‘Grand,Tack’,model?,(Walsh+,2011),
0.1AU 1AU 10AU
Me V E Ma J S U N
close%scaLering%
&%giant%impacts%
,,Morishima+,(2008),
,,Hansen,(2009),,
induced%forma3on%of%Saturn%
,,Kobayashi,,Ormel,,Ida,(2012)%
di?usion%via%planetesimal%scaLering%
,,Fernandez,&,Ip,(1994),
secular%perturba3on%by%JS%in%2:1%
,,Nice,model,,
~2M⊕ 50I100M⊕
[Ida-san s talk]
ちゃんとした論文は出ていないが多くの人が何となく思っている
25. H.P. w/ H2 Atmosphere
[Pierrehumbert & Gaidos 2011]
Pierrehumbert & Gaidos
01 0.1 1 10
0.1
1
10
100
G star M star
Orbital distance (AU)
Surfacepressurefor280K(bar)
H2-He 大気による温室効果を考慮
M, G 型星周りの 3ME のスーパー地球について計算
H2 大気100barで 2.4AU(M), 15AU(G) まで H.Z.
OGLE-2005-BLG-390Lb
26. Habitable Snowball Planets
全球が氷に覆われている惑星で内部熱源を考慮
氷の一部が溶け内部海を持つ可能性
[Tajika 2008; Ueta & Sasaki 2013 ]
BALL PLANETS L55
Fig. 4.—Limit of the distance from the central star for the existence of
subsurface liquid water. As the planetary mass increases, the ice thickness
decreases while the water depth increases. Therefore, liquid water under the
Europa
27. OtherVarious H.P./H.S.
- Habitable satellites around Gas Giants
[Heller, Sasaki et al., 2014]
- Habitable circum-binary planets (e.g., Kepler-16b)
- Habitable Free Floating Planets
[Ueta & Sasaki 2013]
- Habitable planets with Dark Matter (?!)
[J. H. Steffen, presentation@ExSSII]
etc...