ºÝºÝߣshows by User: FranoisChristiaens / http://www.slideshare.net/images/logo.gif ºÝºÝߣshows by User: FranoisChristiaens / Tue, 12 May 2020 13:11:25 GMT ºÝºÝߣShare feed for ºÝºÝߣshows by User: FranoisChristiaens Cartes heuristiques / mindmap : quoi, pourquoi, comment, quand https://fr.slideshare.net/slideshow/les-cartes-heuristiques-233675470/233675470 lescartesheuristiques-200512131125
Les cartes mentales (mindmapping) : définition, descriptions et exemples d'utilisations, dans un contexte professionnel (entreprise privée).]]>

Les cartes mentales (mindmapping) : définition, descriptions et exemples d'utilisations, dans un contexte professionnel (entreprise privée).]]>
Tue, 12 May 2020 13:11:25 GMT https://fr.slideshare.net/slideshow/les-cartes-heuristiques-233675470/233675470 FranoisChristiaens@slideshare.net(FranoisChristiaens) Cartes heuristiques / mindmap : quoi, pourquoi, comment, quand FranoisChristiaens Les cartes mentales (mindmapping) : définition, descriptions et exemples d'utilisations, dans un contexte professionnel (entreprise privée). <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/lescartesheuristiques-200512131125-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Les cartes mentales (mindmapping) : définition, descriptions et exemples d&#39;utilisations, dans un contexte professionnel (entreprise privée).
from Franå·½ois Christiaens
]]>
95 0 https://cdn.slidesharecdn.com/ss_thumbnails/lescartesheuristiques-200512131125-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Science is built on trust. /slideshow/ethics-in-scientific-research-francois-christiaens-edited/29178366 ethicsinscientificresearchfrancoischristiaensedited-131213070243-phpapp02
Science builds on itself, and the enormous scientific progress of the last several centuries has been due largely to the trust that scientists place in one another and the trust the public places in scientists. I explore the responsibility that researchers have toward one another and to the world at large.]]>

Science builds on itself, and the enormous scientific progress of the last several centuries has been due largely to the trust that scientists place in one another and the trust the public places in scientists. I explore the responsibility that researchers have toward one another and to the world at large.]]>
Fri, 13 Dec 2013 07:02:43 GMT /slideshow/ethics-in-scientific-research-francois-christiaens-edited/29178366 FranoisChristiaens@slideshare.net(FranoisChristiaens) Science is built on trust. FranoisChristiaens Science builds on itself, and the enormous scientific progress of the last several centuries has been due largely to the trust that scientists place in one another and the trust the public places in scientists. I explore the responsibility that researchers have toward one another and to the world at large. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/ethicsinscientificresearchfrancoischristiaensedited-131213070243-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Science builds on itself, and the enormous scientific progress of the last several centuries has been due largely to the trust that scientists place in one another and the trust the public places in scientists. I explore the responsibility that researchers have toward one another and to the world at large.
Science is built on trust. from Franå·½ois Christiaens
]]>
334 5 https://cdn.slidesharecdn.com/ss_thumbnails/ethicsinscientificresearchfrancoischristiaensedited-131213070243-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds document Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Looking for a radiant skin, look out for radiation /slideshow/looking-for-a-radiant-skin-look-out-for-radiation/28933287 lookingforaradiantskinlookoutforradiation-131205115637-phpapp02
]]>

]]>
Thu, 05 Dec 2013 11:56:37 GMT /slideshow/looking-for-a-radiant-skin-look-out-for-radiation/28933287 FranoisChristiaens@slideshare.net(FranoisChristiaens) Looking for a radiant skin, look out for radiation FranoisChristiaens <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/lookingforaradiantskinlookoutforradiation-131205115637-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
Looking for a radiant skin, look out for radiation from Franå·½ois Christiaens
]]>
588 4 https://cdn.slidesharecdn.com/ss_thumbnails/lookingforaradiantskinlookoutforradiation-131205115637-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Which proportion/dose of ambient UVA radiation do we receive? /slideshow/poster-jda2001/18910572 posterjda2001-130416033629-phpapp02
]]>

]]>
Tue, 16 Apr 2013 03:36:29 GMT /slideshow/poster-jda2001/18910572 FranoisChristiaens@slideshare.net(FranoisChristiaens) Which proportion/dose of ambient UVA radiation do we receive? FranoisChristiaens <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/posterjda2001-130416033629-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br>
Which proportion/dose of ambient UVA radiation do we receive? from Franå·½ois Christiaens
]]>
572 4 https://cdn.slidesharecdn.com/ss_thumbnails/posterjda2001-130416033629-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds document Blanc http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
The need to improve solar simulators and defining standards. /slideshow/pml99/18910381 pml99-130416033421-phpapp01
Standards should require solar simulators to be more like sunlight. It is possible to re-filter solar simulators to be more like sunlight. Reasonable solar spectra should pass these standards.]]>

Standards should require solar simulators to be more like sunlight. It is possible to re-filter solar simulators to be more like sunlight. Reasonable solar spectra should pass these standards.]]>
Tue, 16 Apr 2013 03:34:21 GMT /slideshow/pml99/18910381 FranoisChristiaens@slideshare.net(FranoisChristiaens) The need to improve solar simulators and defining standards. FranoisChristiaens Standards should require solar simulators to be more like sunlight. It is possible to re-filter solar simulators to be more like sunlight. Reasonable solar spectra should pass these standards. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/pml99-130416033421-phpapp01-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Standards should require solar simulators to be more like sunlight. It is possible to re-filter solar simulators to be more like sunlight. Reasonable solar spectra should pass these standards.
The need to improve solar simulators and defining standards. from Franå·½ois Christiaens
]]>
1090 3 https://cdn.slidesharecdn.com/ss_thumbnails/pml99-130416033421-phpapp01-thumbnail.jpg?width=120&height=120&fit=bounds document Blanc http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Variation of sunscreen efficacy using solar spectrum and solar simulators. /slideshow/esp99/18910145 esp99-130416033214-phpapp02
Sunscreen SPF can vary with the UV source spectrum: SPF tends to increase when more short UVB and/or less long UVA radiation is present in the source spectrum. Higher UVA protection in sunscreen products leads to lower SPF variation due to the source spectrum. With increasing labelled SPF values, there is a need for more realistic simulated UV spectra and tightened compliance limits.]]>

Sunscreen SPF can vary with the UV source spectrum: SPF tends to increase when more short UVB and/or less long UVA radiation is present in the source spectrum. Higher UVA protection in sunscreen products leads to lower SPF variation due to the source spectrum. With increasing labelled SPF values, there is a need for more realistic simulated UV spectra and tightened compliance limits.]]>
Tue, 16 Apr 2013 03:32:14 GMT /slideshow/esp99/18910145 FranoisChristiaens@slideshare.net(FranoisChristiaens) Variation of sunscreen efficacy using solar spectrum and solar simulators. FranoisChristiaens Sunscreen SPF can vary with the UV source spectrum: SPF tends to increase when more short UVB and/or less long UVA radiation is present in the source spectrum. Higher UVA protection in sunscreen products leads to lower SPF variation due to the source spectrum. With increasing labelled SPF values, there is a need for more realistic simulated UV spectra and tightened compliance limits. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/esp99-130416033214-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Sunscreen SPF can vary with the UV source spectrum: SPF tends to increase when more short UVB and/or less long UVA radiation is present in the source spectrum. Higher UVA protection in sunscreen products leads to lower SPF variation due to the source spectrum. With increasing labelled SPF values, there is a need for more realistic simulated UV spectra and tightened compliance limits.
Variation of sunscreen efficacy using solar spectrum and solar simulators. from Franå·½ois Christiaens
]]>
718 3 https://cdn.slidesharecdn.com/ss_thumbnails/esp99-130416033214-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds document Blanc http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Cosmétique et optique https://fr.slideshare.net/slideshow/cosmtique-et-optique/18909886 cosmtiqueetoptique-130416032912-phpapp01
La cosmétique est un métier situé à l’interface de la biologie, la physico-chimie et l’art de la beauté. Au coeur de la cosmétique, il y a l’apparence : il faut la transformer, la modifier, la protéger, la préserver, l’améliorer… Or l’apparence est jugée visuellement. L’oeil critique apprécie la couleur d’un visage, sa carnation, l’éclat du teint, le relief cutané, la brillance d’une chevelure… L’optique a donc une place naturellement objective dans la cosmétique. L’optique est associée étroitement à la chimie et à la physique pour la découverte et la caractérisation de molécules et de matériaux. Dans le domaine des Sciences du Vivant, l’optique se trouve dans les trois axes de la création d’un produit : la sécurité (innocuité), l’efficacité et la recherche.]]>

La cosmétique est un métier situé à l’interface de la biologie, la physico-chimie et l’art de la beauté. Au coeur de la cosmétique, il y a l’apparence : il faut la transformer, la modifier, la protéger, la préserver, l’améliorer… Or l’apparence est jugée visuellement. L’oeil critique apprécie la couleur d’un visage, sa carnation, l’éclat du teint, le relief cutané, la brillance d’une chevelure… L’optique a donc une place naturellement objective dans la cosmétique. L’optique est associée étroitement à la chimie et à la physique pour la découverte et la caractérisation de molécules et de matériaux. Dans le domaine des Sciences du Vivant, l’optique se trouve dans les trois axes de la création d’un produit : la sécurité (innocuité), l’efficacité et la recherche.]]>
Tue, 16 Apr 2013 03:29:12 GMT https://fr.slideshare.net/slideshow/cosmtique-et-optique/18909886 FranoisChristiaens@slideshare.net(FranoisChristiaens) Cosmétique et optique FranoisChristiaens La cosmétique est un métier situé à l’interface de la biologie, la physico-chimie et l’art de la beauté. Au coeur de la cosmétique, il y a l’apparence : il faut la transformer, la modifier, la protéger, la préserver, l’améliorer… Or l’apparence est jugée visuellement. L’oeil critique apprécie la couleur d’un visage, sa carnation, l’éclat du teint, le relief cutané, la brillance d’une chevelure… L’optique a donc une place naturellement objective dans la cosmétique. L’optique est associée étroitement à la chimie et à la physique pour la découverte et la caractérisation de molécules et de matériaux. Dans le domaine des Sciences du Vivant, l’optique se trouve dans les trois axes de la création d’un produit : la sécurité (innocuité), l’efficacité et la recherche. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/cosmtiqueetoptique-130416032912-phpapp01-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> La cosmétique est un métier situé à l’interface de la biologie, la physico-chimie et l’art de la beauté. Au coeur de la cosmétique, il y a l’apparence : il faut la transformer, la modifier, la protéger, la préserver, l’améliorer… Or l’apparence est jugée visuellement. L’oeil critique apprécie la couleur d’un visage, sa carnation, l’éclat du teint, le relief cutané, la brillance d’une chevelure… L’optique a donc une place naturellement objective dans la cosmétique. L’optique est associée étroitement à la chimie et à la physique pour la découverte et la caractérisation de molécules et de matériaux. Dans le domaine des Sciences du Vivant, l’optique se trouve dans les trois axes de la création d’un produit : la sécurité (innocuité), l’efficacité et la recherche.
from Franå·½ois Christiaens
]]>
1383 6 https://cdn.slidesharecdn.com/ss_thumbnails/cosmtiqueetoptique-130416032912-phpapp01-thumbnail.jpg?width=120&height=120&fit=bounds document Blanc http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Choosing a solar ultraviolet simulator with an appropriate spectrum /slideshow/icp2000/18909637 icp2000-130416032630-phpapp01
The goal of solar ultraviolet (UV) simulation is to reproduce the natural solar UV spectrum. However, this spectrum changes continuously depending on parameters, such as latitude, season, time, cloudiness, etc. From spectra recorded worldwide throughout the year, a realistic ("standard") solar UV spectrum at Earth level was defined by the Deutsches Institut f|r Normung e.V. (DIN) to represent a "worst" case situation. Exposure of human skin to such a spectrum is likely to result in intense biological effects. Simulated solar UV spectra should match the standard spectrum as closely as possible. Here, we present a method to assess the match between a laboratory spectrum and the standard spectrum. Representative UV sources such as xenon arcs, metal halide lamps and fluorescent tubes, along with various filters, have been measured. Differences between the relative irradiance of UV candidate spectra and the standard are calculated for each wavelength. These differences are squared and summed. The lower the sum, the better the match of the source spectrum to the standard sun. This method may be used with or without biological weighting by an action spectrum. We have selected the erythema action spectrum to assess and rank candidate sources. Our analysis shows that filtered ultraviolet B fluorescent tubes are the worst way of simulating solar radiation, with and without weighting by the erythema action spectrum. UV spectra from solaria equipped with combinations of ultraviolet A and ultraviolet B fluorescent tubes are also far from satisfactory. In general, metal halide lamps rank slightly better than the fluorescent UVB tubes. The choice of UV filter plays a significant role in the compliance of candidate UV source. In conclusion, the suggested method allows the determination of the most appropriate UV source to simulate real solar exposure for any targeted biological damage.]]>

The goal of solar ultraviolet (UV) simulation is to reproduce the natural solar UV spectrum. However, this spectrum changes continuously depending on parameters, such as latitude, season, time, cloudiness, etc. From spectra recorded worldwide throughout the year, a realistic ("standard") solar UV spectrum at Earth level was defined by the Deutsches Institut f|r Normung e.V. (DIN) to represent a "worst" case situation. Exposure of human skin to such a spectrum is likely to result in intense biological effects. Simulated solar UV spectra should match the standard spectrum as closely as possible. Here, we present a method to assess the match between a laboratory spectrum and the standard spectrum. Representative UV sources such as xenon arcs, metal halide lamps and fluorescent tubes, along with various filters, have been measured. Differences between the relative irradiance of UV candidate spectra and the standard are calculated for each wavelength. These differences are squared and summed. The lower the sum, the better the match of the source spectrum to the standard sun. This method may be used with or without biological weighting by an action spectrum. We have selected the erythema action spectrum to assess and rank candidate sources. Our analysis shows that filtered ultraviolet B fluorescent tubes are the worst way of simulating solar radiation, with and without weighting by the erythema action spectrum. UV spectra from solaria equipped with combinations of ultraviolet A and ultraviolet B fluorescent tubes are also far from satisfactory. In general, metal halide lamps rank slightly better than the fluorescent UVB tubes. The choice of UV filter plays a significant role in the compliance of candidate UV source. In conclusion, the suggested method allows the determination of the most appropriate UV source to simulate real solar exposure for any targeted biological damage.]]>
Tue, 16 Apr 2013 03:26:30 GMT /slideshow/icp2000/18909637 FranoisChristiaens@slideshare.net(FranoisChristiaens) Choosing a solar ultraviolet simulator with an appropriate spectrum FranoisChristiaens The goal of solar ultraviolet (UV) simulation is to reproduce the natural solar UV spectrum. However, this spectrum changes continuously depending on parameters, such as latitude, season, time, cloudiness, etc. From spectra recorded worldwide throughout the year, a realistic ("standard") solar UV spectrum at Earth level was defined by the Deutsches Institut f|r Normung e.V. (DIN) to represent a "worst" case situation. Exposure of human skin to such a spectrum is likely to result in intense biological effects. Simulated solar UV spectra should match the standard spectrum as closely as possible. Here, we present a method to assess the match between a laboratory spectrum and the standard spectrum. Representative UV sources such as xenon arcs, metal halide lamps and fluorescent tubes, along with various filters, have been measured. Differences between the relative irradiance of UV candidate spectra and the standard are calculated for each wavelength. These differences are squared and summed. The lower the sum, the better the match of the source spectrum to the standard sun. This method may be used with or without biological weighting by an action spectrum. We have selected the erythema action spectrum to assess and rank candidate sources. Our analysis shows that filtered ultraviolet B fluorescent tubes are the worst way of simulating solar radiation, with and without weighting by the erythema action spectrum. UV spectra from solaria equipped with combinations of ultraviolet A and ultraviolet B fluorescent tubes are also far from satisfactory. In general, metal halide lamps rank slightly better than the fluorescent UVB tubes. The choice of UV filter plays a significant role in the compliance of candidate UV source. In conclusion, the suggested method allows the determination of the most appropriate UV source to simulate real solar exposure for any targeted biological damage. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/icp2000-130416032630-phpapp01-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> The goal of solar ultraviolet (UV) simulation is to reproduce the natural solar UV spectrum. However, this spectrum changes continuously depending on parameters, such as latitude, season, time, cloudiness, etc. From spectra recorded worldwide throughout the year, a realistic (&quot;standard&quot;) solar UV spectrum at Earth level was defined by the Deutsches Institut f|r Normung e.V. (DIN) to represent a &quot;worst&quot; case situation. Exposure of human skin to such a spectrum is likely to result in intense biological effects. Simulated solar UV spectra should match the standard spectrum as closely as possible. Here, we present a method to assess the match between a laboratory spectrum and the standard spectrum. Representative UV sources such as xenon arcs, metal halide lamps and fluorescent tubes, along with various filters, have been measured. Differences between the relative irradiance of UV candidate spectra and the standard are calculated for each wavelength. These differences are squared and summed. The lower the sum, the better the match of the source spectrum to the standard sun. This method may be used with or without biological weighting by an action spectrum. We have selected the erythema action spectrum to assess and rank candidate sources. Our analysis shows that filtered ultraviolet B fluorescent tubes are the worst way of simulating solar radiation, with and without weighting by the erythema action spectrum. UV spectra from solaria equipped with combinations of ultraviolet A and ultraviolet B fluorescent tubes are also far from satisfactory. In general, metal halide lamps rank slightly better than the fluorescent UVB tubes. The choice of UV filter plays a significant role in the compliance of candidate UV source. In conclusion, the suggested method allows the determination of the most appropriate UV source to simulate real solar exposure for any targeted biological damage.
Choosing a solar ultraviolet simulator with an appropriate spectrum from Franå·½ois Christiaens
]]>
801 3 https://cdn.slidesharecdn.com/ss_thumbnails/icp2000-130416032630-phpapp01-thumbnail.jpg?width=120&height=120&fit=bounds document Blanc http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Geographical distribution of harmful UV radiation /slideshow/poster-world-congress-dermatology-20002/18908184 posterwcd02geographical-130416031121-phpapp01
Poster world congress dermatology 2002]]>

Poster world congress dermatology 2002]]>
Tue, 16 Apr 2013 03:11:21 GMT /slideshow/poster-world-congress-dermatology-20002/18908184 FranoisChristiaens@slideshare.net(FranoisChristiaens) Geographical distribution of harmful UV radiation FranoisChristiaens Poster world congress dermatology 2002 <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/posterwcd02geographical-130416031121-phpapp01-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Poster world congress dermatology 2002
Geographical distribution of harmful UV radiation from Franå·½ois Christiaens
]]>
355 4 https://cdn.slidesharecdn.com/ss_thumbnails/posterwcd02geographical-130416031121-phpapp01-thumbnail.jpg?width=120&height=120&fit=bounds document Blanc http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
Importancia del conocimiento de las lamparas solares para evaluar los protocolos de fotobiologia https://es.slideshare.net/slideshow/importancia-del-conocimiento-de-las-lamparas-solares-para-evaluar-los-protocolos-de-fotobiologia/18907843 importanciadelconocimientodelaslamparassolaresparaevaluarlosprotocolosdefotobiologia-130416030724-phpapp02
Las fuentes de rayos UV más adecuadas fueron los simuladores de xenón. Además, para guarantizar la exactitud de los datos regístrados, aconsejamos determinar las irradiancias espectrales con un espectroradiómetro apropriado.]]>

Las fuentes de rayos UV más adecuadas fueron los simuladores de xenón. Además, para guarantizar la exactitud de los datos regístrados, aconsejamos determinar las irradiancias espectrales con un espectroradiómetro apropriado.]]>
Tue, 16 Apr 2013 03:07:24 GMT https://es.slideshare.net/slideshow/importancia-del-conocimiento-de-las-lamparas-solares-para-evaluar-los-protocolos-de-fotobiologia/18907843 FranoisChristiaens@slideshare.net(FranoisChristiaens) Importancia del conocimiento de las lamparas solares para evaluar los protocolos de fotobiologia FranoisChristiaens Las fuentes de rayos UV más adecuadas fueron los simuladores de xenón. Además, para guarantizar la exactitud de los datos regístrados, aconsejamos determinar las irradiancias espectrales con un espectroradiómetro apropriado. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/importanciadelconocimientodelaslamparassolaresparaevaluarlosprotocolosdefotobiologia-130416030724-phpapp02-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> Las fuentes de rayos UV más adecuadas fueron los simuladores de xenón. Además, para guarantizar la exactitud de los datos regístrados, aconsejamos determinar las irradiancias espectrales con un espectroradiómetro apropriado.
from Franå·½ois Christiaens
]]>
430 2 https://cdn.slidesharecdn.com/ss_thumbnails/importanciadelconocimientodelaslamparassolaresparaevaluarlosprotocolosdefotobiologia-130416030724-phpapp02-thumbnail.jpg?width=120&height=120&fit=bounds document Blanc http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
EVALUATION OF DAILY PHOTOPROTECTION USING RECONSTRUCTED SKIN MODEL : Relevance of UVA absorption profile and SPF value /slideshow/p2387-f-bernerd-duvr-photoprotection/18906294 p2387fbernerdduvrphotoprotection-130416024905-phpapp01
One of the major long term consequences of chronic non extreme sun exposures is the development of photoaging. The recent definition of a standard daily ultraviolet radiation (DUVR) spectrum has allowed us to reproduce non-zenithal sun exposure conditions. Exposure to simulated DUVR induces biological damage in human skin, suggesting the need for an appropriate daily photoprotection. The reconstructed human skin in vitro, including a living dermal equivalent and a fully differentiated epidermis represents a predictive tool to study the effects of UV. In the present study, sunscreen products were evaluated after topical application on human reconstructed skin in vitro. Two commercial sunscreens (A and B) having similar SPF value (~15) but different profile of transmission over the UVA range were tested on skin models exposed to increasing doses of DUVR. Another pair of sunscreens was also tested. Product C had a SPF ~18 with a well-balanced UVB/UVA absorption profile and product D, with SPF ~27 and low UVA absorption. Biological parameters were assessed by (i) histology, (ii) immunostaining of dermal fibroblasts and (iii) MMP-1 production. Products A and C gave a better protection from DUVR with regard to fibroblast alterations and MMP-1 release compared to products B and D respectively. These results support that a well balanced profile of absorption and the level of UVA protection is of higher relevance than the SPF value to ensure an efficient daily photoprotection from DUVR with regard to end points evaluated in this study, especially the photoaging related biological markers.]]>

One of the major long term consequences of chronic non extreme sun exposures is the development of photoaging. The recent definition of a standard daily ultraviolet radiation (DUVR) spectrum has allowed us to reproduce non-zenithal sun exposure conditions. Exposure to simulated DUVR induces biological damage in human skin, suggesting the need for an appropriate daily photoprotection. The reconstructed human skin in vitro, including a living dermal equivalent and a fully differentiated epidermis represents a predictive tool to study the effects of UV. In the present study, sunscreen products were evaluated after topical application on human reconstructed skin in vitro. Two commercial sunscreens (A and B) having similar SPF value (~15) but different profile of transmission over the UVA range were tested on skin models exposed to increasing doses of DUVR. Another pair of sunscreens was also tested. Product C had a SPF ~18 with a well-balanced UVB/UVA absorption profile and product D, with SPF ~27 and low UVA absorption. Biological parameters were assessed by (i) histology, (ii) immunostaining of dermal fibroblasts and (iii) MMP-1 production. Products A and C gave a better protection from DUVR with regard to fibroblast alterations and MMP-1 release compared to products B and D respectively. These results support that a well balanced profile of absorption and the level of UVA protection is of higher relevance than the SPF value to ensure an efficient daily photoprotection from DUVR with regard to end points evaluated in this study, especially the photoaging related biological markers.]]>
Tue, 16 Apr 2013 02:49:04 GMT /slideshow/p2387-f-bernerd-duvr-photoprotection/18906294 FranoisChristiaens@slideshare.net(FranoisChristiaens) EVALUATION OF DAILY PHOTOPROTECTION USING RECONSTRUCTED SKIN MODEL : Relevance of UVA absorption profile and SPF value FranoisChristiaens One of the major long term consequences of chronic non extreme sun exposures is the development of photoaging. The recent definition of a standard daily ultraviolet radiation (DUVR) spectrum has allowed us to reproduce non-zenithal sun exposure conditions. Exposure to simulated DUVR induces biological damage in human skin, suggesting the need for an appropriate daily photoprotection. The reconstructed human skin in vitro, including a living dermal equivalent and a fully differentiated epidermis represents a predictive tool to study the effects of UV. In the present study, sunscreen products were evaluated after topical application on human reconstructed skin in vitro. Two commercial sunscreens (A and B) having similar SPF value (~15) but different profile of transmission over the UVA range were tested on skin models exposed to increasing doses of DUVR. Another pair of sunscreens was also tested. Product C had a SPF ~18 with a well-balanced UVB/UVA absorption profile and product D, with SPF ~27 and low UVA absorption. Biological parameters were assessed by (i) histology, (ii) immunostaining of dermal fibroblasts and (iii) MMP-1 production. Products A and C gave a better protection from DUVR with regard to fibroblast alterations and MMP-1 release compared to products B and D respectively. These results support that a well balanced profile of absorption and the level of UVA protection is of higher relevance than the SPF value to ensure an efficient daily photoprotection from DUVR with regard to end points evaluated in this study, especially the photoaging related biological markers. <img style="border:1px solid #C3E6D8;float:right;" alt="" src="https://cdn.slidesharecdn.com/ss_thumbnails/p2387fbernerdduvrphotoprotection-130416024905-phpapp01-thumbnail.jpg?width=120&amp;height=120&amp;fit=bounds" /><br> One of the major long term consequences of chronic non extreme sun exposures is the development of photoaging. The recent definition of a standard daily ultraviolet radiation (DUVR) spectrum has allowed us to reproduce non-zenithal sun exposure conditions. Exposure to simulated DUVR induces biological damage in human skin, suggesting the need for an appropriate daily photoprotection. The reconstructed human skin in vitro, including a living dermal equivalent and a fully differentiated epidermis represents a predictive tool to study the effects of UV. In the present study, sunscreen products were evaluated after topical application on human reconstructed skin in vitro. Two commercial sunscreens (A and B) having similar SPF value (~15) but different profile of transmission over the UVA range were tested on skin models exposed to increasing doses of DUVR. Another pair of sunscreens was also tested. Product C had a SPF ~18 with a well-balanced UVB/UVA absorption profile and product D, with SPF ~27 and low UVA absorption. Biological parameters were assessed by (i) histology, (ii) immunostaining of dermal fibroblasts and (iii) MMP-1 production. Products A and C gave a better protection from DUVR with regard to fibroblast alterations and MMP-1 release compared to products B and D respectively. These results support that a well balanced profile of absorption and the level of UVA protection is of higher relevance than the SPF value to ensure an efficient daily photoprotection from DUVR with regard to end points evaluated in this study, especially the photoaging related biological markers.
EVALUATION OF DAILY PHOTOPROTECTION USING RECONSTRUCTED SKIN MODEL : Relevance of UVA absorption profile and SPF value from Franå·½ois Christiaens
]]>
1914 5 https://cdn.slidesharecdn.com/ss_thumbnails/p2387fbernerdduvrphotoprotection-130416024905-phpapp01-thumbnail.jpg?width=120&height=120&fit=bounds presentation Black http://activitystrea.ms/schema/1.0/post http://activitystrea.ms/schema/1.0/posted 0
https://cdn.slidesharecdn.com/profile-photo-FranoisChristiaens-48x48.jpg?cb=1629452929 I am a technology scout, backed up by a strong technical expertise in private research and development (cosmetics domain). My two major sets of skills are: 1) Identify emerging technologies, channel technology related information and, in a corporate context, support of the acquision of technologies. In other words: Watch (collection, selection, dissemination) + analysis of scientific and market topics. and 2) Expertise in characterization of illumination conditions in photobiology and photochemistry studies + in methods development, i.e. the objective assessment of cosmetics products proof of performance. Visual appearance assessment, including colorimetry. ----------------------------... http://reflexionstrat.wordpress.com https://cdn.slidesharecdn.com/ss_thumbnails/lescartesheuristiques-200512131125-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/les-cartes-heuristiques-233675470/233675470 Cartes heuristiques / ... https://cdn.slidesharecdn.com/ss_thumbnails/ethicsinscientificresearchfrancoischristiaensedited-131213070243-phpapp02-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/ethics-in-scientific-research-francois-christiaens-edited/29178366 Science is built on tr... https://cdn.slidesharecdn.com/ss_thumbnails/lookingforaradiantskinlookoutforradiation-131205115637-phpapp02-thumbnail.jpg?width=320&height=320&fit=bounds slideshow/looking-for-a-radiant-skin-look-out-for-radiation/28933287 Looking for a radiant ...