際際滷

際際滷Share a Scribd company logo
( 7 0 ) 1 0
- 07- - 70
8 80 7 2- - 7 8 - 8 - 8 -2-
? -. . . . .
? - - - -
-
? -. . . . .
. . . , . . . .
? - . -
- - -
? E) 05 5 4 0 1 0 2 5 4 1 2 0 50 ) 0 2
1 2 A 2 0 ( .
? E 54 5 4 2 52 2 0 2 A
2421C 2 0 ( .
? G
? H B A ,, : : A B:A
B A A A A B ,, A
A : : A
? H) A
? BA ,, B :
? B : :
?
H- :B : A . : B : AD ( AG A :
. . .. . .
. .
? . , ., . , . . . .
. , , . .
. .,
? . . . . . . . . . . ,
.,
. (. , .. . . ) .
XP RF FRI 1 BFHHMJPPF" 1R 1GVW FHW SR JK RJ JRW FTT SFHM WS J K HFW SR SK F W K H FP
RJX FP RJW S OV" R 3S TXWJ 1 IJI CJ K HFW SR 31C ( "
MWWTV0 JVJF HMLFWJ RJW TXGP HFW SR (( ) .
( XP RF FRI 1 BFHHMJPPF" 3MFPPJRL RL A B VSP J V WS J K RJX FP RJW S OV" 19 3S XR "
SP ( " RS (" TT - ) " 1T ( ( MWWT0 I IS S L )()) 193 ( ( (
MWWTV0 TIKV VJ FRW HVHMSPF S L H/ J K-) G/H .-H/I KGH-HK./ F,, FF,/ /.( TIK
) AHMJ GPJ " D RWJ J " D J " FRI 2 2JHOJ BS F IV J K HFW SR SK F W K H FP RJX FP
RJW S OV 9R .WM DS OVMST SR JWMSIJR XRI 2JVHM J GXRLVVT FHMJR X SIJPP J XRL XRI
CJ K OFW SR SR AHMFPWXRLJR XRI A VWJ JR 2 C " (
MWWT0 F FHV S L K PJFI R XGP OFW SRJR TJR VHMJ GPJ G ( TIK
E 8XFRL" FWOS VOF" A DFRL" FRI DX" AFKJW J K HFW SR SK IJJT RJX FP RJW S OV"
31C ( - R WJI WFPO" MWWT0 F S L FGV , ,/
7 FW " 3 2F JWW" 4 4 PP" :XP FR" FRI SHMJRIJ KJ " JPXTPJ 0 1R JKK H JRW A B VSP J
KS J K RL IJJT RJX FP RJW S OV" 31C ( -" MWWT0 F S L FGV - ( )
, 5MPJ V" 6S FP J K HFW SR SK JHJ D VJ P RJF 6JJI 6S F I RJX FP RJW S OV"
MWWT0 F S L FGV - )(
(()
? 1 3 , : ,: : 2 : 1 : :
( , ,1
: , 1 3 . . : ,
:, 2
) ., , : ,: , :
: , . 1 . ?"#
. " ? "> < ( ? * " ? *(">) < -
( , , : ,: , :
: , " ? "> < ( ? * " ? *(">) < -
2
(()
? ) ? ? . = .= ?= ? = = =?
= . ? ? C ? ? ? 1 ? C 1
=?. =. . . ?
F
? = C. . . ? .? . ?
C C C C
? .? . H ? = C. ? ? . ? = =?
? , .? . H = .?
? ? // / /
. = C H ( ? =
) (
? , =B :
? ) = = = = ?
=
? A :
? F E F E F = =
? ? (
? F E F E F E F
=
) (
? - . : . :
? . - , : -
. - - . :
. - - -
? . ,
? : , .
, . 0 1 1 0 1
? ? : 2,3( 1 I E E =
? - = E A = 2,3 A =A
? 2,3 I E I E <= < I ?
? 2 3 = := = = < E=
? , E < I E A < ? : 2,3
? 0E A - A (
< E EE : = : = E = < <
M R = P = ) P = E = P
: E E= = : = +
+ + + +
+ +
? : : : , : ,
? : : ,: : : , / . .
= . : ,
: .
:
B
+ . :
:
: : /
= .
:
::,
:
: ,/ :
A
:
/
? , , / , .,
? / . . ., , C
? :
? / - , .
? A: . . ,/ , . / A: A
? , A
? A: , A
? , /
/ /
Towards formal verification of neural networks
XP RF FRI 1 BFHHMJPPF" 1R 1GVW FHW SR JK RJ JRW FTT SFHM WS J K HFW SR SK F W K H FP
RJX FP RJW S OV" R 3S TXWJ 1 IJI CJ K HFW SR 31C ( "
MWWTV0 JVJF HMLFWJ RJW TXGP HFW SR (( ) .
( XP RF FRI 1 BFHHMJPPF" 3MFPPJRL RL A B VSP J V WS J K RJX FP RJW S OV" 19 3S XR "
SP ( " RS (" TT - ) " 1T ( ( MWWT0 I IS S L )()) 193 ( ( (
MWWTV0 TIKV VJ FRW HVHMSPF S L H/ J K-) G/H .-H/I KGH-HK./ F,, FF,/ /.( TIK
) AHMJ GPJ " D RWJ J " D J " FRI 2 2JHOJ BS F IV J K HFW SR SK F W K H FP RJX FP
RJW S OV 9R .WM DS OVMST SR JWMSIJR XRI 2JVHM J GXRLVVT FHMJR X SIJPP J XRL XRI
CJ K OFW SR SR AHMFPWXRLJR XRI A VWJ JR 2 C " (
MWWT0 F FHV S L K PJFI R XGP OFW SRJR TJR VHMJ GPJ G ( TIK
E 8XFRL" FWOS VOF" A DFRL" FRI DX" AFKJW J K HFW SR SK IJJT RJX FP RJW S OV"
31C ( - R WJI WFPO" MWWT0 F S L FGV , ,/
7 FW " 3 2F JWW" 4 4 PP" :XP FR" FRI SHMJRIJ KJ " JPXTPJ 0 1R JKK H JRW A B VSP J
KS J K RL IJJT RJX FP RJW S OV" 31C ( -" MWWT0 F S L FGV - ( )
, 5MPJ V" 6S FP J K HFW SR SK JHJ D VJ P RJF 6JJI 6S F I RJX FP RJW S OV"
MWWT0 F S L FGV - )(
- - -
- - -
? 5 H H 0 : C 0H 0=LM M H 8 A H G HM
C M A M H A M A H H MP EL
H 1 G M 0 A M H 10 ) (
CMM L. PPP L C M H M = M H ))(+ +-,
? . 5 ( C H R MC M M H M A G
A P E H G M L A H LM G H M
? . 3 = L A MR
? . : L 4R 0: " 12308 = L H HM L
? 12308 / 1 HM 2 G 3 0=LM M H 8 A H G HM
- - -
- - -
( ) )
(
? )
? ) : : , A A F . A
: : :A : ,C AC C : , A
:: ,C AC C = = =
AC C = = : A
GAEAC E C , A
: : A = :
(
AC C = = : = : A
,C : A AC C
::
. ..
- - -
- - -
? ,) ) ) . (
( ,) , ,. , )( ) ). ( ) ) .
, )
? ( ) ) ) . ) ) .) (
- - -
- - -
? . 5.- . 50 - 0.5. .- , 3
? . 3 0.5. .- 53 5 .
? . . . 03 , 3 . 50 . 3-
? 2 8 C K 3 M K K K ? / / K T IP K?L
O K A M I IA KM A K MPIK L 1 +MC IK LCI I
MCI? ? / L CK BLL K C S K I? K B ?
: K A M I OI 8 C M B ? 8RLM / : (
CMM , PPP O L IKB A ? M I 5 L C K
O( ?A
? , 0 KM I I MKI K
? , --- IM PK MM M R MC K
? , /I ? ? I? 0C B 8 LI O K 8. ) L
?
? .?? B M A M I L MI L ? I LMK M KI B M I
Towards formal verification of neural networks
? 4R LF" 6TH IMT I " LF" LC R" D V
SD H HB HML M CDDN LDR LD TM I "X 0. ( HLSH DC I"
G N- HS M F A ,)
G N - FH GRA BMK SD HCDDN C S
? - K FD 0 H HB HML 0 2.: " K FD9D " 9 "
:/
? - MB CSD H MAR LD
? - 1H B D HW HML" 7 VD AV 7 VD
Towards formal verification of neural networks
? 2 = T 0 /=LLA 1 1 GG 3 G = = J DA ALBAL
7AG KGAR, . ABB A MJG AL BJL AL BS C AAK A L=G
A JL M 0. ( + D K, =LR JLC = M + ( )
D KM, C D J C S = TT 7AG KGAR0= ( +
? , = L JL A JGG M J = J = A MSM A BJL = A = L L=B
.0.
? , GJ =G CGJ =G = ALM=L =G LJ M AMM
? , " 57. MJG AL AR A A J D= GA 7A5:
? 57. 5 A=L 7A=G .L D A
? 57. MJG AL M M =GGS =MA J =G M KGAR A DJ
? , = (-- 2 = = =A A A = = 2
2 =A = 2 =2 = =D = 2= .
? . 2 2= AA 2A 2 . 2 2A
H I H
? ) D A A = 2 = 2 A A
,0 A D 2 A 2A A =
? 2 = . = ,0 A D
= =A = 2A A
? 0 A 2 2= = 2 2 A
A D
? : FC 6 B F B 6 -/) B A C : 6 / -
6 A C 0 F / - / F
? 6 0 F B 6 -/) B A
? , A 6 C B :CC ( B B BA AB 6
? + BCA CB A A A B C 6 B C 6 A 6B
? !" = ‘%& (( )",+!+ A !+ ( ,
? ( B A B . ( B A B
? -" + !" + /" A !" ( , “ 1
? : B A C B A BB C α | , “ 1 ★ ? B : C: C
?!+ ( 1. -++ α(!+) + /+ 6 CA C B C B C: A 6B
C A C B
? , . 0 0 !", !$ ( & : 0 !$ = ReLU(!")
? 0 : 0 0 0 1
0 0 0 A
? ) 0 0 , A- 1A
0 :0 , . 0 A 0
% 0
0 A ( A
? B? C? A C? . B? ,
? K ?G I B A B?? BA B A K
B GA AA ) G
? + BG C B A B?
? (G A IB L BB ?? M 0 3 AB
B?G BA
- - -
- -
? - I .F D L FE F 3 " I E . "
.F M E E MF I + N L F :I
? I+ : FD F E
? + , F I FE LF E 12/5
? + F F: L I F: I E II
? + 51 0 E N FE F 07 1 N3FF
//5 E E FEI E F FE
- - -
- -
I L B E E F F E I E=
4 B N B E + B E
( I 5, IEBL E F BB = N F I I
) 5EBL 13 N B E I I =E = N I
? I E A L = E E
P I E= EL = N 4 1
E F = 4 1 = I B IEB E
0= I B I 02 .,50-1.
? I B I = B E E F 005
0 B 0 = I B 5 I
E = F I = N
I 5, IEBL B I
5E I =E E I
F EF E
3 I 3 I
- - -
- -
?
?
ure 3: Two pairs of vehicle trajectories, where the ?rst one is non-colliding, and the second one

More Related Content

Similar to Towards formal verification of neural networks (20)

Spark MLlib ML Pipelines の古勣 式びpysparkからのQい圭
Spark MLlib ML Pipelines の古勣 式びpysparkからのQい圭Spark MLlib ML Pipelines の古勣 式びpysparkからのQい圭
Spark MLlib ML Pipelines の古勣 式びpysparkからのQい圭
Takeshi Mikami
?
Functional Gradient Boosting based on Residual Network Perception
Functional Gradient Boosting based on Residual Network PerceptionFunctional Gradient Boosting based on Residual Network Perception
Functional Gradient Boosting based on Residual Network Perception
Atsushi Nitanda
?
Google Cloud Dataflowによる デ`タQI尖秘T
Google Cloud Dataflowによる デ`タQI尖秘TGoogle Cloud Dataflowによる デ`タQI尖秘T
Google Cloud Dataflowによる デ`タQI尖秘T
Takeshi Mikami
?
katagaitai CTF workshop #10 AESにする珸v薦盾裂
katagaitai CTF workshop #10 AESにする珸v薦盾裂katagaitai CTF workshop #10 AESにする珸v薦盾裂
katagaitai CTF workshop #10 AESにする珸v薦盾裂
trmr
?
20190225 DIY史要慰
20190225 DIY史要慰20190225 DIY史要慰
20190225 DIY史要慰
Kato Ryosuke
?
Kubernetes ネットワ`キングのすべて
Kubernetes ネットワ`キングのすべてKubernetes ネットワ`キングのすべて
Kubernetes ネットワ`キングのすべて
LINE Corporation
?
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: ???? ???? ??? ?????
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: ???? ???? ??? ?????[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: ???? ???? ??? ?????
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: ???? ???? ??? ?????
OpenStack Korea Community
?
侮蚊僥楼による掲錆らかなv方の容協
侮蚊僥楼による掲錆らかなv方の容協侮蚊僥楼による掲錆らかなv方の容協
侮蚊僥楼による掲錆らかなv方の容協
Masaaki Imaizumi
?
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
MasanoriSuganuma
?
20181109 tfug fukuoka_02_tpu
20181109 tfug fukuoka_02_tpu20181109 tfug fukuoka_02_tpu
20181109 tfug fukuoka_02_tpu
m-shimao
?
OpenStack Summit & KubeConからみるコンテナ室gの恷仟トレンド (厚仟井) - OpenStack Day Tokyo 2018v處Y創
OpenStack Summit & KubeConからみるコンテナ室gの恷仟トレンド (厚仟井) - OpenStack Day Tokyo 2018v處Y創OpenStack Summit & KubeConからみるコンテナ室gの恷仟トレンド (厚仟井) - OpenStack Day Tokyo 2018v處Y創
OpenStack Summit & KubeConからみるコンテナ室gの恷仟トレンド (厚仟井) - OpenStack Day Tokyo 2018v處Y創
VirtualTech Japan Inc.
?
Prelude to halide_public
Prelude to halide_publicPrelude to halide_public
Prelude to halide_public
Fixstars Corporation
?
Safe Reinforcement Learning
Safe Reinforcement LearningSafe Reinforcement Learning
Safe Reinforcement Learning
Dongmin Lee
?
‐俐平胎猟/遺鰻鰻を喘いた協崔利嚀魁におけるマグロ嗤涙の容協にvする冩梢
‐俐平胎猟/遺鰻鰻を喘いた協崔利嚀魁におけるマグロ嗤涙の容協にvする冩梢‐俐平胎猟/遺鰻鰻を喘いた協崔利嚀魁におけるマグロ嗤涙の容協にvする冩梢
‐俐平胎猟/遺鰻鰻を喘いた協崔利嚀魁におけるマグロ嗤涙の容協にvする冩梢
harmonylab
?
‐俐平胎猟府初/ソ`シャルメディアからの恬喘を深打した署蛮偏魁のQ霞?嚠霞モデルの戻宛
‐俐平胎猟府初/ソ`シャルメディアからの恬喘を深打した署蛮偏魁のQ霞?嚠霞モデルの戻宛‐俐平胎猟府初/ソ`シャルメディアからの恬喘を深打した署蛮偏魁のQ霞?嚠霞モデルの戻宛
‐俐平胎猟府初/ソ`シャルメディアからの恬喘を深打した署蛮偏魁のQ霞?嚠霞モデルの戻宛
Koichiro tamura
?
uuum_3q
uuum_3quuum_3q
uuum_3q
Kazuki Kamada
?
リアルタイムh並hΨU原きのビデオ氏hを恬ろう ~WebRTCの恷仟嗜~ SkyWay Media Pipeline Factory
リアルタイムh並hΨU原きのビデオ氏hを恬ろう ~WebRTCの恷仟嗜~ SkyWay Media Pipeline Factoryリアルタイムh並hΨU原きのビデオ氏hを恬ろう ~WebRTCの恷仟嗜~ SkyWay Media Pipeline Factory
リアルタイムh並hΨU原きのビデオ氏hを恬ろう ~WebRTCの恷仟嗜~ SkyWay Media Pipeline Factory
Ryosuke Otsuya
?
OSC 2018 Nagoya rsyncやシェルでバックアップするよりもgにOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりもgにOSSのBaculaでバックアップしてみようOSC 2018 Nagoya rsyncやシェルでバックアップするよりもgにOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりもgにOSSのBaculaでバックアップしてみよう
Ken Sawada
?
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Yuma Koizumi
?
Elixirでハ`ドウェアが恬れちゃうかも。。 デ`タフロ`侏ハ`ドウェアOh廠CockatriceのごB初
Elixirでハ`ドウェアが恬れちゃうかも。。デ`タフロ`侏ハ`ドウェアOh廠CockatriceのごB初Elixirでハ`ドウェアが恬れちゃうかも。。デ`タフロ`侏ハ`ドウェアOh廠CockatriceのごB初
Elixirでハ`ドウェアが恬れちゃうかも。。 デ`タフロ`侏ハ`ドウェアOh廠CockatriceのごB初
Hideki Takase
?
Spark MLlib ML Pipelines の古勣 式びpysparkからのQい圭
Spark MLlib ML Pipelines の古勣 式びpysparkからのQい圭Spark MLlib ML Pipelines の古勣 式びpysparkからのQい圭
Spark MLlib ML Pipelines の古勣 式びpysparkからのQい圭
Takeshi Mikami
?
Functional Gradient Boosting based on Residual Network Perception
Functional Gradient Boosting based on Residual Network PerceptionFunctional Gradient Boosting based on Residual Network Perception
Functional Gradient Boosting based on Residual Network Perception
Atsushi Nitanda
?
Google Cloud Dataflowによる デ`タQI尖秘T
Google Cloud Dataflowによる デ`タQI尖秘TGoogle Cloud Dataflowによる デ`タQI尖秘T
Google Cloud Dataflowによる デ`タQI尖秘T
Takeshi Mikami
?
katagaitai CTF workshop #10 AESにする珸v薦盾裂
katagaitai CTF workshop #10 AESにする珸v薦盾裂katagaitai CTF workshop #10 AESにする珸v薦盾裂
katagaitai CTF workshop #10 AESにする珸v薦盾裂
trmr
?
20190225 DIY史要慰
20190225 DIY史要慰20190225 DIY史要慰
20190225 DIY史要慰
Kato Ryosuke
?
Kubernetes ネットワ`キングのすべて
Kubernetes ネットワ`キングのすべてKubernetes ネットワ`キングのすべて
Kubernetes ネットワ`キングのすべて
LINE Corporation
?
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: ???? ???? ??? ?????
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: ???? ???? ??? ?????[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: ???? ???? ??? ?????
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: ???? ???? ??? ?????
OpenStack Korea Community
?
侮蚊僥楼による掲錆らかなv方の容協
侮蚊僥楼による掲錆らかなv方の容協侮蚊僥楼による掲錆らかなv方の容協
侮蚊僥楼による掲錆らかなv方の容協
Masaaki Imaizumi
?
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
MasanoriSuganuma
?
20181109 tfug fukuoka_02_tpu
20181109 tfug fukuoka_02_tpu20181109 tfug fukuoka_02_tpu
20181109 tfug fukuoka_02_tpu
m-shimao
?
OpenStack Summit & KubeConからみるコンテナ室gの恷仟トレンド (厚仟井) - OpenStack Day Tokyo 2018v處Y創
OpenStack Summit & KubeConからみるコンテナ室gの恷仟トレンド (厚仟井) - OpenStack Day Tokyo 2018v處Y創OpenStack Summit & KubeConからみるコンテナ室gの恷仟トレンド (厚仟井) - OpenStack Day Tokyo 2018v處Y創
OpenStack Summit & KubeConからみるコンテナ室gの恷仟トレンド (厚仟井) - OpenStack Day Tokyo 2018v處Y創
VirtualTech Japan Inc.
?
Safe Reinforcement Learning
Safe Reinforcement LearningSafe Reinforcement Learning
Safe Reinforcement Learning
Dongmin Lee
?
‐俐平胎猟/遺鰻鰻を喘いた協崔利嚀魁におけるマグロ嗤涙の容協にvする冩梢
‐俐平胎猟/遺鰻鰻を喘いた協崔利嚀魁におけるマグロ嗤涙の容協にvする冩梢‐俐平胎猟/遺鰻鰻を喘いた協崔利嚀魁におけるマグロ嗤涙の容協にvする冩梢
‐俐平胎猟/遺鰻鰻を喘いた協崔利嚀魁におけるマグロ嗤涙の容協にvする冩梢
harmonylab
?
‐俐平胎猟府初/ソ`シャルメディアからの恬喘を深打した署蛮偏魁のQ霞?嚠霞モデルの戻宛
‐俐平胎猟府初/ソ`シャルメディアからの恬喘を深打した署蛮偏魁のQ霞?嚠霞モデルの戻宛‐俐平胎猟府初/ソ`シャルメディアからの恬喘を深打した署蛮偏魁のQ霞?嚠霞モデルの戻宛
‐俐平胎猟府初/ソ`シャルメディアからの恬喘を深打した署蛮偏魁のQ霞?嚠霞モデルの戻宛
Koichiro tamura
?
リアルタイムh並hΨU原きのビデオ氏hを恬ろう ~WebRTCの恷仟嗜~ SkyWay Media Pipeline Factory
リアルタイムh並hΨU原きのビデオ氏hを恬ろう ~WebRTCの恷仟嗜~ SkyWay Media Pipeline Factoryリアルタイムh並hΨU原きのビデオ氏hを恬ろう ~WebRTCの恷仟嗜~ SkyWay Media Pipeline Factory
リアルタイムh並hΨU原きのビデオ氏hを恬ろう ~WebRTCの恷仟嗜~ SkyWay Media Pipeline Factory
Ryosuke Otsuya
?
OSC 2018 Nagoya rsyncやシェルでバックアップするよりもgにOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりもgにOSSのBaculaでバックアップしてみようOSC 2018 Nagoya rsyncやシェルでバックアップするよりもgにOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりもgにOSSのBaculaでバックアップしてみよう
Ken Sawada
?
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Yuma Koizumi
?
Elixirでハ`ドウェアが恬れちゃうかも。。 デ`タフロ`侏ハ`ドウェアOh廠CockatriceのごB初
Elixirでハ`ドウェアが恬れちゃうかも。。デ`タフロ`侏ハ`ドウェアOh廠CockatriceのごB初Elixirでハ`ドウェアが恬れちゃうかも。。デ`タフロ`侏ハ`ドウェアOh廠CockatriceのごB初
Elixirでハ`ドウェアが恬れちゃうかも。。 デ`タフロ`侏ハ`ドウェアOh廠CockatriceのごB初
Hideki Takase
?

More from Masahiro Sakai (20)

DeepXplore: Automated Whitebox Testing of Deep Learning
DeepXplore: Automated Whitebox Testing of Deep LearningDeepXplore: Automated Whitebox Testing of Deep Learning
DeepXplore: Automated Whitebox Testing of Deep Learning
Masahiro Sakai
?
v方プログラマから需た永霞岳鞄看稼と字亠僥楼
v方プログラマから需た永霞岳鞄看稼と字亠僥楼v方プログラマから需た永霞岳鞄看稼と字亠僥楼
v方プログラマから需た永霞岳鞄看稼と字亠僥楼
Masahiro Sakai
?
Writing a SAT solver as a hobby project
Writing a SAT solver as a hobby projectWriting a SAT solver as a hobby project
Writing a SAT solver as a hobby project
Masahiro Sakai
?
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
Masahiro Sakai
?
ゼロピッチ: MOOC
ゼロピッチ: MOOCゼロピッチ: MOOC
ゼロピッチ: MOOC
Masahiro Sakai
?
SAT/SMT solving in Haskell
SAT/SMT solving in HaskellSAT/SMT solving in Haskell
SAT/SMT solving in Haskell
Masahiro Sakai
?
皆粥意/皆珂意ソルバの碧怏み
皆粥意/皆珂意ソルバの碧怏み皆粥意/皆珂意ソルバの碧怏み
皆粥意/皆珂意ソルバの碧怏み
Masahiro Sakai
?
Introduction to Max-SAT and Max-SAT Evaluation
Introduction to Max-SAT and Max-SAT EvaluationIntroduction to Max-SAT and Max-SAT Evaluation
Introduction to Max-SAT and Max-SAT Evaluation
Masahiro Sakai
?
Aluminum: Principled Scenario Exploration through Minimality
Aluminum: Principled Scenario Exploration through MinimalityAluminum: Principled Scenario Exploration through Minimality
Aluminum: Principled Scenario Exploration through Minimality
Masahiro Sakai
?
旗方議g方と遺粥禽のg廾府初
旗方議g方と遺粥禽のg廾府初旗方議g方と遺粥禽のg廾府初
旗方議g方と遺粥禽のg廾府初
Masahiro Sakai
?
How a CDCL SAT solver works
How a CDCL SAT solver worksHow a CDCL SAT solver works
How a CDCL SAT solver works
Masahiro Sakai
?
Omega test and beyond
Omega test and beyondOmega test and beyond
Omega test and beyond
Masahiro Sakai
?
c勸捲何冩梢片 スキ`栽凡 2012 徭失B初(焼小)
c勸捲何冩梢片 スキ`栽凡 2012 徭失B初(焼小)c勸捲何冩梢片 スキ`栽凡 2012 徭失B初(焼小)
c勸捲何冩梢片 スキ`栽凡 2012 徭失B初(焼小)
Masahiro Sakai
?
徭強協尖^苧の府初
徭強協尖^苧の府初徭強協尖^苧の府初
徭強協尖^苧の府初
Masahiro Sakai
?
^Adoption and Focus: Practical Linear Types for Imperative Programming ̄麿のB初P...
^Adoption and Focus: Practical Linear Types for Imperative Programming ̄麿のB初P...^Adoption and Focus: Practical Linear Types for Imperative Programming ̄麿のB初P...
^Adoption and Focus: Practical Linear Types for Imperative Programming ̄麿のB初P...
Masahiro Sakai
?
^Design and Implementation of Generics for the .NET Common Language Runtime ̄麿...
^Design and Implementation of Generics for the .NET Common Language Runtime ̄麿...^Design and Implementation of Generics for the .NET Common Language Runtime ̄麿...
^Design and Implementation of Generics for the .NET Common Language Runtime ̄麿...
Masahiro Sakai
?
Relaxed Dependency Analysis
Relaxed Dependency AnalysisRelaxed Dependency Analysis
Relaxed Dependency Analysis
Masahiro Sakai
?
^Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
^Symbolic bounds analysis of pointers, array indices, and accessed memory reg...^Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
^Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
Masahiro Sakai
?
徭隼冱囂をラムダ塀で盾する悶狼永意河の堰温壊一艶鉛鉛g廾
徭隼冱囂をラムダ塀で盾する悶狼永意河の堰温壊一艶鉛鉛g廾徭隼冱囂をラムダ塀で盾する悶狼永意河の堰温壊一艶鉛鉛g廾
徭隼冱囂をラムダ塀で盾する悶狼永意河の堰温壊一艶鉛鉛g廾
Masahiro Sakai
?
Whole Program Paths 吉のB初@PLDIr#3
Whole Program Paths 吉のB初@PLDIr#3Whole Program Paths 吉のB初@PLDIr#3
Whole Program Paths 吉のB初@PLDIr#3
Masahiro Sakai
?
DeepXplore: Automated Whitebox Testing of Deep Learning
DeepXplore: Automated Whitebox Testing of Deep LearningDeepXplore: Automated Whitebox Testing of Deep Learning
DeepXplore: Automated Whitebox Testing of Deep Learning
Masahiro Sakai
?
v方プログラマから需た永霞岳鞄看稼と字亠僥楼
v方プログラマから需た永霞岳鞄看稼と字亠僥楼v方プログラマから需た永霞岳鞄看稼と字亠僥楼
v方プログラマから需た永霞岳鞄看稼と字亠僥楼
Masahiro Sakai
?
Writing a SAT solver as a hobby project
Writing a SAT solver as a hobby projectWriting a SAT solver as a hobby project
Writing a SAT solver as a hobby project
Masahiro Sakai
?
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
Masahiro Sakai
?
SAT/SMT solving in Haskell
SAT/SMT solving in HaskellSAT/SMT solving in Haskell
SAT/SMT solving in Haskell
Masahiro Sakai
?
皆粥意/皆珂意ソルバの碧怏み
皆粥意/皆珂意ソルバの碧怏み皆粥意/皆珂意ソルバの碧怏み
皆粥意/皆珂意ソルバの碧怏み
Masahiro Sakai
?
Introduction to Max-SAT and Max-SAT Evaluation
Introduction to Max-SAT and Max-SAT EvaluationIntroduction to Max-SAT and Max-SAT Evaluation
Introduction to Max-SAT and Max-SAT Evaluation
Masahiro Sakai
?
Aluminum: Principled Scenario Exploration through Minimality
Aluminum: Principled Scenario Exploration through MinimalityAluminum: Principled Scenario Exploration through Minimality
Aluminum: Principled Scenario Exploration through Minimality
Masahiro Sakai
?
旗方議g方と遺粥禽のg廾府初
旗方議g方と遺粥禽のg廾府初旗方議g方と遺粥禽のg廾府初
旗方議g方と遺粥禽のg廾府初
Masahiro Sakai
?
How a CDCL SAT solver works
How a CDCL SAT solver worksHow a CDCL SAT solver works
How a CDCL SAT solver works
Masahiro Sakai
?
c勸捲何冩梢片 スキ`栽凡 2012 徭失B初(焼小)
c勸捲何冩梢片 スキ`栽凡 2012 徭失B初(焼小)c勸捲何冩梢片 スキ`栽凡 2012 徭失B初(焼小)
c勸捲何冩梢片 スキ`栽凡 2012 徭失B初(焼小)
Masahiro Sakai
?
徭強協尖^苧の府初
徭強協尖^苧の府初徭強協尖^苧の府初
徭強協尖^苧の府初
Masahiro Sakai
?
^Adoption and Focus: Practical Linear Types for Imperative Programming ̄麿のB初P...
^Adoption and Focus: Practical Linear Types for Imperative Programming ̄麿のB初P...^Adoption and Focus: Practical Linear Types for Imperative Programming ̄麿のB初P...
^Adoption and Focus: Practical Linear Types for Imperative Programming ̄麿のB初P...
Masahiro Sakai
?
^Design and Implementation of Generics for the .NET Common Language Runtime ̄麿...
^Design and Implementation of Generics for the .NET Common Language Runtime ̄麿...^Design and Implementation of Generics for the .NET Common Language Runtime ̄麿...
^Design and Implementation of Generics for the .NET Common Language Runtime ̄麿...
Masahiro Sakai
?
Relaxed Dependency Analysis
Relaxed Dependency AnalysisRelaxed Dependency Analysis
Relaxed Dependency Analysis
Masahiro Sakai
?
^Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
^Symbolic bounds analysis of pointers, array indices, and accessed memory reg...^Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
^Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
Masahiro Sakai
?
徭隼冱囂をラムダ塀で盾する悶狼永意河の堰温壊一艶鉛鉛g廾
徭隼冱囂をラムダ塀で盾する悶狼永意河の堰温壊一艶鉛鉛g廾徭隼冱囂をラムダ塀で盾する悶狼永意河の堰温壊一艶鉛鉛g廾
徭隼冱囂をラムダ塀で盾する悶狼永意河の堰温壊一艶鉛鉛g廾
Masahiro Sakai
?
Whole Program Paths 吉のB初@PLDIr#3
Whole Program Paths 吉のB初@PLDIr#3Whole Program Paths 吉のB初@PLDIr#3
Whole Program Paths 吉のB初@PLDIr#3
Masahiro Sakai
?

Recently uploaded (20)

Stronger Together: Combining Data Quality and Governance for Confident AI & A...
Stronger Together: Combining Data Quality and Governance for Confident AI & A...Stronger Together: Combining Data Quality and Governance for Confident AI & A...
Stronger Together: Combining Data Quality and Governance for Confident AI & A...
Precisely
?
DAO UTokyo 2025 DLT mass adoption case studies IBM Tsuyoshi Hirayama (峠表吼)
DAO UTokyo 2025 DLT mass adoption case studies IBM Tsuyoshi Hirayama (峠表吼)DAO UTokyo 2025 DLT mass adoption case studies IBM Tsuyoshi Hirayama (峠表吼)
DAO UTokyo 2025 DLT mass adoption case studies IBM Tsuyoshi Hirayama (峠表吼)
Tsuyoshi Hirayama
?
BoxLang JVM Language : The Future is Dynamic
BoxLang JVM Language : The Future is DynamicBoxLang JVM Language : The Future is Dynamic
BoxLang JVM Language : The Future is Dynamic
Ortus Solutions, Corp
?
UiPath Document Understanding - Generative AI and Active learning capabilities
UiPath Document Understanding - Generative AI and Active learning capabilitiesUiPath Document Understanding - Generative AI and Active learning capabilities
UiPath Document Understanding - Generative AI and Active learning capabilities
DianaGray10
?
World Information Architecture Day 2025 - UX at a Crossroads
World Information Architecture Day 2025 - UX at a CrossroadsWorld Information Architecture Day 2025 - UX at a Crossroads
World Information Architecture Day 2025 - UX at a Crossroads
Joshua Randall
?
Unlock AI Creativity: Image Generation with DALL,E
Unlock AI Creativity: Image Generation with DALL,EUnlock AI Creativity: Image Generation with DALL,E
Unlock AI Creativity: Image Generation with DALL,E
Expeed Software
?
Cloud of everything Tech of the 21 century in Aviation
Cloud of everything Tech of the 21 century in AviationCloud of everything Tech of the 21 century in Aviation
Cloud of everything Tech of the 21 century in Aviation
Assem mousa
?
Q4 2024 Earnings and Investor Presentation
Q4 2024 Earnings and Investor PresentationQ4 2024 Earnings and Investor Presentation
Q4 2024 Earnings and Investor Presentation
Dropbox
?
EaseUS Partition Master Crack 2025 + Serial Key
EaseUS Partition Master Crack 2025 + Serial KeyEaseUS Partition Master Crack 2025 + Serial Key
EaseUS Partition Master Crack 2025 + Serial Key
kherorpacca127
?
What Makes "Deep Research"? A Dive into AI Agents
What Makes "Deep Research"? A Dive into AI AgentsWhat Makes "Deep Research"? A Dive into AI Agents
What Makes "Deep Research"? A Dive into AI Agents
Zilliz
?
A Framework for Model-Driven Digital Twin Engineering
A Framework for Model-Driven Digital Twin EngineeringA Framework for Model-Driven Digital Twin Engineering
A Framework for Model-Driven Digital Twin Engineering
Daniel Lehner
?
MIND Revenue Release Quarter 4 2024 - Finacial Presentation
MIND Revenue Release Quarter 4 2024 - Finacial PresentationMIND Revenue Release Quarter 4 2024 - Finacial Presentation
MIND Revenue Release Quarter 4 2024 - Finacial Presentation
MIND CTI
?
TrustArc Webinar - Building your DPIA/PIA Program: Best Practices & Tips
TrustArc Webinar - Building your DPIA/PIA Program: Best Practices & TipsTrustArc Webinar - Building your DPIA/PIA Program: Best Practices & Tips
TrustArc Webinar - Building your DPIA/PIA Program: Best Practices & Tips
TrustArc
?
Unlocking DevOps Secuirty :Vault & Keylock
Unlocking DevOps Secuirty :Vault & KeylockUnlocking DevOps Secuirty :Vault & Keylock
Unlocking DevOps Secuirty :Vault & Keylock
HusseinMalikMammadli
?
[Webinar] Scaling Made Simple: Getting Started with No-Code Web Apps
[Webinar] Scaling Made Simple: Getting Started with No-Code Web Apps[Webinar] Scaling Made Simple: Getting Started with No-Code Web Apps
[Webinar] Scaling Made Simple: Getting Started with No-Code Web Apps
Safe Software
?
Computational Photography: How Technology is Changing Way We Capture the World
Computational Photography: How Technology is Changing Way We Capture the WorldComputational Photography: How Technology is Changing Way We Capture the World
Computational Photography: How Technology is Changing Way We Capture the World
HusseinMalikMammadli
?
Q4_TLE-7-Lesson-6-Week-6.pptx 4th quarter
Q4_TLE-7-Lesson-6-Week-6.pptx 4th quarterQ4_TLE-7-Lesson-6-Week-6.pptx 4th quarter
Q4_TLE-7-Lesson-6-Week-6.pptx 4th quarter
MariaBarbaraPaglinaw
?
1.1. Evolution-and-Scope-of-Business-Analytics.pptx
1.1. Evolution-and-Scope-of-Business-Analytics.pptx1.1. Evolution-and-Scope-of-Business-Analytics.pptx
1.1. Evolution-and-Scope-of-Business-Analytics.pptx
Jitendra Tomar
?
Replacing RocksDB with ScyllaDB in Kafka Streams by Almog Gavra
Replacing RocksDB with ScyllaDB in Kafka Streams by Almog GavraReplacing RocksDB with ScyllaDB in Kafka Streams by Almog Gavra
Replacing RocksDB with ScyllaDB in Kafka Streams by Almog Gavra
ScyllaDB
?
UiPath Agentic Automation Capabilities and Opportunities
UiPath Agentic Automation Capabilities and OpportunitiesUiPath Agentic Automation Capabilities and Opportunities
UiPath Agentic Automation Capabilities and Opportunities
DianaGray10
?
Stronger Together: Combining Data Quality and Governance for Confident AI & A...
Stronger Together: Combining Data Quality and Governance for Confident AI & A...Stronger Together: Combining Data Quality and Governance for Confident AI & A...
Stronger Together: Combining Data Quality and Governance for Confident AI & A...
Precisely
?
DAO UTokyo 2025 DLT mass adoption case studies IBM Tsuyoshi Hirayama (峠表吼)
DAO UTokyo 2025 DLT mass adoption case studies IBM Tsuyoshi Hirayama (峠表吼)DAO UTokyo 2025 DLT mass adoption case studies IBM Tsuyoshi Hirayama (峠表吼)
DAO UTokyo 2025 DLT mass adoption case studies IBM Tsuyoshi Hirayama (峠表吼)
Tsuyoshi Hirayama
?
BoxLang JVM Language : The Future is Dynamic
BoxLang JVM Language : The Future is DynamicBoxLang JVM Language : The Future is Dynamic
BoxLang JVM Language : The Future is Dynamic
Ortus Solutions, Corp
?
UiPath Document Understanding - Generative AI and Active learning capabilities
UiPath Document Understanding - Generative AI and Active learning capabilitiesUiPath Document Understanding - Generative AI and Active learning capabilities
UiPath Document Understanding - Generative AI and Active learning capabilities
DianaGray10
?
World Information Architecture Day 2025 - UX at a Crossroads
World Information Architecture Day 2025 - UX at a CrossroadsWorld Information Architecture Day 2025 - UX at a Crossroads
World Information Architecture Day 2025 - UX at a Crossroads
Joshua Randall
?
Unlock AI Creativity: Image Generation with DALL,E
Unlock AI Creativity: Image Generation with DALL,EUnlock AI Creativity: Image Generation with DALL,E
Unlock AI Creativity: Image Generation with DALL,E
Expeed Software
?
Cloud of everything Tech of the 21 century in Aviation
Cloud of everything Tech of the 21 century in AviationCloud of everything Tech of the 21 century in Aviation
Cloud of everything Tech of the 21 century in Aviation
Assem mousa
?
Q4 2024 Earnings and Investor Presentation
Q4 2024 Earnings and Investor PresentationQ4 2024 Earnings and Investor Presentation
Q4 2024 Earnings and Investor Presentation
Dropbox
?
EaseUS Partition Master Crack 2025 + Serial Key
EaseUS Partition Master Crack 2025 + Serial KeyEaseUS Partition Master Crack 2025 + Serial Key
EaseUS Partition Master Crack 2025 + Serial Key
kherorpacca127
?
What Makes "Deep Research"? A Dive into AI Agents
What Makes "Deep Research"? A Dive into AI AgentsWhat Makes "Deep Research"? A Dive into AI Agents
What Makes "Deep Research"? A Dive into AI Agents
Zilliz
?
A Framework for Model-Driven Digital Twin Engineering
A Framework for Model-Driven Digital Twin EngineeringA Framework for Model-Driven Digital Twin Engineering
A Framework for Model-Driven Digital Twin Engineering
Daniel Lehner
?
MIND Revenue Release Quarter 4 2024 - Finacial Presentation
MIND Revenue Release Quarter 4 2024 - Finacial PresentationMIND Revenue Release Quarter 4 2024 - Finacial Presentation
MIND Revenue Release Quarter 4 2024 - Finacial Presentation
MIND CTI
?
TrustArc Webinar - Building your DPIA/PIA Program: Best Practices & Tips
TrustArc Webinar - Building your DPIA/PIA Program: Best Practices & TipsTrustArc Webinar - Building your DPIA/PIA Program: Best Practices & Tips
TrustArc Webinar - Building your DPIA/PIA Program: Best Practices & Tips
TrustArc
?
Unlocking DevOps Secuirty :Vault & Keylock
Unlocking DevOps Secuirty :Vault & KeylockUnlocking DevOps Secuirty :Vault & Keylock
Unlocking DevOps Secuirty :Vault & Keylock
HusseinMalikMammadli
?
[Webinar] Scaling Made Simple: Getting Started with No-Code Web Apps
[Webinar] Scaling Made Simple: Getting Started with No-Code Web Apps[Webinar] Scaling Made Simple: Getting Started with No-Code Web Apps
[Webinar] Scaling Made Simple: Getting Started with No-Code Web Apps
Safe Software
?
Computational Photography: How Technology is Changing Way We Capture the World
Computational Photography: How Technology is Changing Way We Capture the WorldComputational Photography: How Technology is Changing Way We Capture the World
Computational Photography: How Technology is Changing Way We Capture the World
HusseinMalikMammadli
?
Q4_TLE-7-Lesson-6-Week-6.pptx 4th quarter
Q4_TLE-7-Lesson-6-Week-6.pptx 4th quarterQ4_TLE-7-Lesson-6-Week-6.pptx 4th quarter
Q4_TLE-7-Lesson-6-Week-6.pptx 4th quarter
MariaBarbaraPaglinaw
?
1.1. Evolution-and-Scope-of-Business-Analytics.pptx
1.1. Evolution-and-Scope-of-Business-Analytics.pptx1.1. Evolution-and-Scope-of-Business-Analytics.pptx
1.1. Evolution-and-Scope-of-Business-Analytics.pptx
Jitendra Tomar
?
Replacing RocksDB with ScyllaDB in Kafka Streams by Almog Gavra
Replacing RocksDB with ScyllaDB in Kafka Streams by Almog GavraReplacing RocksDB with ScyllaDB in Kafka Streams by Almog Gavra
Replacing RocksDB with ScyllaDB in Kafka Streams by Almog Gavra
ScyllaDB
?
UiPath Agentic Automation Capabilities and Opportunities
UiPath Agentic Automation Capabilities and OpportunitiesUiPath Agentic Automation Capabilities and Opportunities
UiPath Agentic Automation Capabilities and Opportunities
DianaGray10
?

Towards formal verification of neural networks

  • 1. ( 7 0 ) 1 0 - 07- - 70 8 80 7 2- - 7 8 - 8 - 8 -2-
  • 2. ? -. . . . . ? - - - - - ? -. . . . . . . . , . . . . ? - . - - - -
  • 3. ? E) 05 5 4 0 1 0 2 5 4 1 2 0 50 ) 0 2 1 2 A 2 0 ( . ? E 54 5 4 2 52 2 0 2 A 2421C 2 0 ( . ? G
  • 4. ? H B A ,, : : A B:A B A A A A B ,, A A : : A ? H) A ? BA ,, B : ? B : : ? H- :B : A . : B : AD ( AG A :
  • 5. . . .. . . . . ? . , ., . , . . . . . , , . . . ., ? . . . . . . . . . . , ., . (. , .. . . ) .
  • 6. XP RF FRI 1 BFHHMJPPF" 1R 1GVW FHW SR JK RJ JRW FTT SFHM WS J K HFW SR SK F W K H FP RJX FP RJW S OV" R 3S TXWJ 1 IJI CJ K HFW SR 31C ( " MWWTV0 JVJF HMLFWJ RJW TXGP HFW SR (( ) . ( XP RF FRI 1 BFHHMJPPF" 3MFPPJRL RL A B VSP J V WS J K RJX FP RJW S OV" 19 3S XR " SP ( " RS (" TT - ) " 1T ( ( MWWT0 I IS S L )()) 193 ( ( ( MWWTV0 TIKV VJ FRW HVHMSPF S L H/ J K-) G/H .-H/I KGH-HK./ F,, FF,/ /.( TIK ) AHMJ GPJ " D RWJ J " D J " FRI 2 2JHOJ BS F IV J K HFW SR SK F W K H FP RJX FP RJW S OV 9R .WM DS OVMST SR JWMSIJR XRI 2JVHM J GXRLVVT FHMJR X SIJPP J XRL XRI CJ K OFW SR SR AHMFPWXRLJR XRI A VWJ JR 2 C " ( MWWT0 F FHV S L K PJFI R XGP OFW SRJR TJR VHMJ GPJ G ( TIK E 8XFRL" FWOS VOF" A DFRL" FRI DX" AFKJW J K HFW SR SK IJJT RJX FP RJW S OV" 31C ( - R WJI WFPO" MWWT0 F S L FGV , ,/ 7 FW " 3 2F JWW" 4 4 PP" :XP FR" FRI SHMJRIJ KJ " JPXTPJ 0 1R JKK H JRW A B VSP J KS J K RL IJJT RJX FP RJW S OV" 31C ( -" MWWT0 F S L FGV - ( ) , 5MPJ V" 6S FP J K HFW SR SK JHJ D VJ P RJF 6JJI 6S F I RJX FP RJW S OV" MWWT0 F S L FGV - )(
  • 7. (() ? 1 3 , : ,: : 2 : 1 : : ( , ,1 : , 1 3 . . : , :, 2 ) ., , : ,: , : : , . 1 . ?"# . " ? "> < ( ? * " ? *(">) < - ( , , : ,: , : : , " ? "> < ( ? * " ? *(">) < - 2
  • 8. (() ? ) ? ? . = .= ?= ? = = =? = . ? ? C ? ? ? 1 ? C 1 =?. =. . . ? F ? = C. . . ? .? . ? C C C C ? .? . H ? = C. ? ? . ? = =? ? , .? . H = .? ? ? // / / . = C H ( ? =
  • 9. ) ( ? , =B : ? ) = = = = ? = ? A : ? F E F E F = = ? ? ( ? F E F E F E F =
  • 10. ) ( ? - . : . : ? . - , : - . - - . : . - - - ? . , ? : , . , . 0 1 1 0 1
  • 11. ? ? : 2,3( 1 I E E = ? - = E A = 2,3 A =A ? 2,3 I E I E <= < I ? ? 2 3 = := = = < E= ? , E < I E A < ? : 2,3 ? 0E A - A ( < E EE : = : = E = < < M R = P = ) P = E = P : E E= = : = +
  • 12. + + + + + + ? : : : , : , ? : : ,: : : , / . . = . : , : . : B + . : : : : / = . : ::, : : ,/ : A :
  • 13. / ? , , / , ., ? / . . ., , C ? : ? / - , . ? A: . . ,/ , . / A: A ? , A ? A: , A ? , / / /
  • 15. XP RF FRI 1 BFHHMJPPF" 1R 1GVW FHW SR JK RJ JRW FTT SFHM WS J K HFW SR SK F W K H FP RJX FP RJW S OV" R 3S TXWJ 1 IJI CJ K HFW SR 31C ( " MWWTV0 JVJF HMLFWJ RJW TXGP HFW SR (( ) . ( XP RF FRI 1 BFHHMJPPF" 3MFPPJRL RL A B VSP J V WS J K RJX FP RJW S OV" 19 3S XR " SP ( " RS (" TT - ) " 1T ( ( MWWT0 I IS S L )()) 193 ( ( ( MWWTV0 TIKV VJ FRW HVHMSPF S L H/ J K-) G/H .-H/I KGH-HK./ F,, FF,/ /.( TIK ) AHMJ GPJ " D RWJ J " D J " FRI 2 2JHOJ BS F IV J K HFW SR SK F W K H FP RJX FP RJW S OV 9R .WM DS OVMST SR JWMSIJR XRI 2JVHM J GXRLVVT FHMJR X SIJPP J XRL XRI CJ K OFW SR SR AHMFPWXRLJR XRI A VWJ JR 2 C " ( MWWT0 F FHV S L K PJFI R XGP OFW SRJR TJR VHMJ GPJ G ( TIK E 8XFRL" FWOS VOF" A DFRL" FRI DX" AFKJW J K HFW SR SK IJJT RJX FP RJW S OV" 31C ( - R WJI WFPO" MWWT0 F S L FGV , ,/ 7 FW " 3 2F JWW" 4 4 PP" :XP FR" FRI SHMJRIJ KJ " JPXTPJ 0 1R JKK H JRW A B VSP J KS J K RL IJJT RJX FP RJW S OV" 31C ( -" MWWT0 F S L FGV - ( ) , 5MPJ V" 6S FP J K HFW SR SK JHJ D VJ P RJF 6JJI 6S F I RJX FP RJW S OV" MWWT0 F S L FGV - )(
  • 16. - - - - - - ? 5 H H 0 : C 0H 0=LM M H 8 A H G HM C M A M H A M A H H MP EL H 1 G M 0 A M H 10 ) ( CMM L. PPP L C M H M = M H ))(+ +-, ? . 5 ( C H R MC M M H M A G A P E H G M L A H LM G H M ? . 3 = L A MR ? . : L 4R 0: " 12308 = L H HM L ? 12308 / 1 HM 2 G 3 0=LM M H 8 A H G HM
  • 17. - - - - - -
  • 18. ( ) ) ( ? ) ? ) : : , A A F . A : : :A : ,C AC C : , A :: ,C AC C = = = AC C = = : A GAEAC E C , A : : A = : ( AC C = = : = : A ,C : A AC C :: . ..
  • 19. - - - - - - ? ,) ) ) . ( ( ,) , ,. , )( ) ). ( ) ) . , ) ? ( ) ) ) . ) ) .) (
  • 20. - - - - - - ? . 5.- . 50 - 0.5. .- , 3 ? . 3 0.5. .- 53 5 . ? . . . 03 , 3 . 50 . 3-
  • 21. ? 2 8 C K 3 M K K K ? / / K T IP K?L O K A M I IA KM A K MPIK L 1 +MC IK LCI I MCI? ? / L CK BLL K C S K I? K B ? : K A M I OI 8 C M B ? 8RLM / : ( CMM , PPP O L IKB A ? M I 5 L C K O( ?A ? , 0 KM I I MKI K ? , --- IM PK MM M R MC K ? , /I ? ? I? 0C B 8 LI O K 8. ) L ? ? .?? B M A M I L MI L ? I LMK M KI B M I
  • 23. ? 4R LF" 6TH IMT I " LF" LC R" D V SD H HB HML M CDDN LDR LD TM I "X 0. ( HLSH DC I" G N- HS M F A ,) G N - FH GRA BMK SD HCDDN C S ? - K FD 0 H HB HML 0 2.: " K FD9D " 9 " :/ ? - MB CSD H MAR LD ? - 1H B D HW HML" 7 VD AV 7 VD
  • 25. ? 2 = T 0 /=LLA 1 1 GG 3 G = = J DA ALBAL 7AG KGAR, . ABB A MJG AL BJL AL BS C AAK A L=G A JL M 0. ( + D K, =LR JLC = M + ( ) D KM, C D J C S = TT 7AG KGAR0= ( + ? , = L JL A JGG M J = J = A MSM A BJL = A = L L=B .0. ? , GJ =G CGJ =G = ALM=L =G LJ M AMM ? , " 57. MJG AL AR A A J D= GA 7A5: ? 57. 5 A=L 7A=G .L D A ? 57. MJG AL M M =GGS =MA J =G M KGAR A DJ
  • 26. ? , = (-- 2 = = =A A A = = 2 2 =A = 2 =2 = =D = 2= . ? . 2 2= AA 2A 2 . 2 2A H I H ? ) D A A = 2 = 2 A A ,0 A D 2 A 2A A = ? 2 = . = ,0 A D = =A = 2A A ? 0 A 2 2= = 2 2 A A D
  • 27. ? : FC 6 B F B 6 -/) B A C : 6 / - 6 A C 0 F / - / F ? 6 0 F B 6 -/) B A ? , A 6 C B :CC ( B B BA AB 6 ? + BCA CB A A A B C 6 B C 6 A 6B ? !" = ‘%& (( )",+!+ A !+ ( , ? ( B A B . ( B A B ? -" + !" + /" A !" ( , “ 1 ? : B A C B A BB C α | , “ 1 ★ ? B : C: C ?!+ ( 1. -++ α(!+) + /+ 6 CA C B C B C: A 6B C A C B
  • 28. ? , . 0 0 !", !$ ( & : 0 !$ = ReLU(!") ? 0 : 0 0 0 1 0 0 0 A ? ) 0 0 , A- 1A 0 :0 , . 0 A 0 % 0 0 A ( A
  • 29. ? B? C? A C? . B? , ? K ?G I B A B?? BA B A K B GA AA ) G ? + BG C B A B? ? (G A IB L BB ?? M 0 3 AB B?G BA
  • 30. - - - - - ? - I .F D L FE F 3 " I E . " .F M E E MF I + N L F :I ? I+ : FD F E ? + , F I FE LF E 12/5 ? + F F: L I F: I E II ? + 51 0 E N FE F 07 1 N3FF //5 E E FEI E F FE
  • 31. - - - - - I L B E E F F E I E= 4 B N B E + B E ( I 5, IEBL E F BB = N F I I ) 5EBL 13 N B E I I =E = N I ? I E A L = E E P I E= EL = N 4 1 E F = 4 1 = I B IEB E 0= I B I 02 .,50-1. ? I B I = B E E F 005 0 B 0 = I B 5 I E = F I = N I 5, IEBL B I 5E I =E E I F EF E 3 I 3 I
  • 32. - - - - - ? ? ure 3: Two pairs of vehicle trajectories, where the ?rst one is non-colliding, and the second one