ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Journal Review 2017-2
Why Does Deep and Cheap Learning Work So Well?
Jinseob Kim
Sep 12, 2017
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 1 / 38
1 Introduction
2 Expressibility and E?ciency of Shallow Neural Networks
3 Why Deep?
4 Conclusions
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 2 / 38
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 3 / 38
https://arxiv.org/abs/1608.08225
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 4 / 38
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 5 / 38
https://www.technologyreview.com/s/602344/
the-extraordinary-link-between-deep-neural-networks-and-the-n
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 6 / 38
Introduction
Introduction
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 7 / 38
Introduction
Why DL work well: Math perspective
Universal approximation theorem
????? ?? ??? Hidden Layer 1?? ????? ?? ???
? ??.
/theeluwin/
universal-approximation-theorem-70937339
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 8 / 38
Introduction
This paper: Physics perspective
How can neural networks approximate functions well in practice?
Expressibility: What class of functions can the neural network express?
E?ciency: How many resources (neurons, parameters, etc) does the
neural network require to approximate a given function?
Learnability: How rapidly can the neural network learn good parameters
for approximating a function?
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 9 / 38
Expressibility and E?ciency of Shallow Neural Networks
Expressibility and E?ciency of Shallow Neural
Networks
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 10 / 38
Expressibility and E?ciency of Shallow Neural Networks
Summary
1 ?? f : (x, y) ¡ú xy ? ??? ??? ? ??.
2 Low polynomial: ????? ??? ??????? ??? 4
???? ???, DL? ????.
????: e?x2
- 2??
3 Locality: ?? ????? ???, ??? 2? ??? interaction
???..
4 Symmetry: ???? ??? ???- parameter? ????.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 11 / 38
Expressibility and E?ciency of Shallow Neural Networks
Notation: Physics vs ML
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 12 / 38
Expressibility and E?ciency of Shallow Neural Networks
Hamiltonian: ???
H(x) = ?ln p(x)
p(x) = e?H(x)
?) ????
p(x) =
1
¡Ì
2¦Ð
e?x2/2
H(x) =
x2
2
+ ln
¡Ì
2¦Ð
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 13 / 38
Expressibility and E?ciency of Shallow Neural Networks
Ex) Boltzman distribution
???? ??? ?? ???? ?? ??
p(E) ¡Ø e? E
kT
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 14 / 38
Expressibility and E?ciency of Shallow Neural Networks
Example: Restricted Boltzman Machine(RBM)
E(v, h) = ?
i
ai vi ?
j
bjhj ?
i j
vi wi,jhj
P(v, h) =
1
Z
e?E(v,h)
P(v) = 1
Z h e?E(v,h)? ??? ?? ai , bj, wi,j?? ???.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 15 / 38
Expressibility and E?ciency of Shallow Neural Networks
Multiplication Gate: Easy
¦Ò(u) = ¦Ò0 + ¦Ò1u + ¦Ò2
u2
2
+ O(n3
)
m(u, v) ¡Ô
¦Ò(u + v) + ¦Ò(?u ? v) ? ¦Ò(u ? v) ? ¦Ò(?u + v)
4¦Ò2
= uv[1 + O(u2
+ v2
)]
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 16 / 38
Expressibility and E?ciency of Shallow Neural Networks
Low polynomial
H(x) = h +
i
hi xi +
i<j
hijxi xj +
i<j<k
hijkxi xjxk + ¡¤ ¡¤ ¡¤
?? ???? ????(Standard Model)?? ??? 4?? ??.
??????: ????? ?????? ???, ????? ?? 2
H(x) = h +
i
hi xi +
i<j
hijxi xj
2?? ??? ????? ?? ??.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 17 / 38
Expressibility and E?ciency of Shallow Neural Networks
Locality
???? ?? ??
???? ??????. ?? ??? ??? ???? X
H(x) = h +
i
hi xi +
i<j
hijxi xj +
i<j<k
hijkxi xjxk + ¡¤ ¡¤ ¡¤
???? h?? 0? ??? ??.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 18 / 38
Expressibility and E?ciency of Shallow Neural Networks
Symmetry: Law of Nature
??????: ???????
??????: ????????
????: ???????
H(x) = h +
i
hi xi +
i<j
hijxi xj +
i<j<k
hijkxi xjxk + ¡¤ ¡¤ ¡¤
h? ? ?? ??? ?? ?. (ex: CNN)
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 19 / 38
Why Deep?
Why Deep?
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 20 / 38
Why Deep?
Summary: Layer ?? ??? ??
Hierarchical Processess
???? ??
No ?attening theorem
Layer ?? ??? ??? parameter?? ??? ??? ? ??.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 21 / 38
Why Deep?
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 22 / 38
Why Deep?
1 ?????? ?? ????? ????(CMB) ??? ??
?? ???
2 ?? Frequency? ??: noise??
???? ???? ??
3 CMB SKY MAP : ?????? ??
??? ?? ???
4 ??????: ?? ??? ??
??, ??, ??. . .
5 ???? ??
??? vs ? ??
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 23 / 38
Why Deep?
Su?cient Statistics and Hierarchies
Su?cient Statistics T(x)
P(y|x) = P(y|T(x))
y? ??? x? ??? T(x)? ?? ???? ??.
?: P(y|x) = ?ey??x ? ?, T(x) = ?x
x? ??? ???.
???????? T(x)? ???.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 24 / 38
Why Deep?
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 25 / 38
Why Deep?
Renormalization Group Theory
?????? ??? ??? ?? ? ??.
??? ?? ??. ??? ?? ????.
Elementary Particle ¡ú atom ¡ú gas, liquid, solid (F = ma)
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 26 / 38
Why Deep?
Example: Block Spin renormalization
???? Grouping
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 27 / 38
Why Deep?
Example: Network renormalization
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 28 / 38
Why Deep?
Example: Box counting renormalization
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 29 / 38
Why Deep?
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 30 / 38
Why Deep?
No ?attening theorem
Layer ?? ??? ??? parameter?? ??? ??? ? ??.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 31 / 38
Why Deep?
??: 1 layer & 4 nodes
???- n? ??? ??
1 1 layer: 2n nodes ??
2 n layer: 4n nodes ??
2n > 4n
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 32 / 38
Why Deep?
Example: ????
0,1?? ????? 1? ??? p? n ¡Á n??? ????.
?? F? ?? ???? ?? ? ??? ? AB? ???? ? ?
?? ??? 1? ?? ????
1? ?? ??? ?? ????.
p? ??? ??? ??.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 33 / 38
Why Deep?
AB? ? ??? ??
A? 1? ??: n2 ¡Á p
B? 1? ??: n2 ¡Á p
F = AB?? 1? ??: 2n2p
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 34 / 38
Why Deep?
F ??? ??
Fij = k AikBkj? 0? ??: (1 ? p2)n
Fij = k AikBkj? 1? ??: 1 ? (1 ? p2)n
F? 1? ??: n2 ¡Á (1 ? (1 ? p2)n)
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 35 / 38
Why Deep?
??
1? ??
2? ??
=
n2(1 ? (1 ? p2)n)
2n2p
=
1 ? (1 ? p2)n
2p
n? ??? ??? ? ??
1
2p
? ????? 1?? ??. ??? 1? ??? ???? ?? ?
??????.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 36 / 38
Conclusions
Conclusions
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 37 / 38
Conclusions
Swallow Neural Network? ??
???? Log(p)? ??? ????? symmetry, low polynomial,
locality? ?? ??.
Deep Neural Network? ??
???? Hierarchial Process
No ?attening theorem
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 38 / 38

More Related Content

Why Does Deep and Cheap Learning Work So Well

  • 1. Journal Review 2017-2 Why Does Deep and Cheap Learning Work So Well? Jinseob Kim Sep 12, 2017 Jinseob Kim Journal Review 2017-2 Sep 12, 2017 1 / 38
  • 2. 1 Introduction 2 Expressibility and E?ciency of Shallow Neural Networks 3 Why Deep? 4 Conclusions Jinseob Kim Journal Review 2017-2 Sep 12, 2017 2 / 38
  • 3. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 3 / 38
  • 4. https://arxiv.org/abs/1608.08225 Jinseob Kim Journal Review 2017-2 Sep 12, 2017 4 / 38
  • 5. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 5 / 38
  • 7. Introduction Introduction Jinseob Kim Journal Review 2017-2 Sep 12, 2017 7 / 38
  • 8. Introduction Why DL work well: Math perspective Universal approximation theorem ????? ?? ??? Hidden Layer 1?? ????? ?? ??? ? ??. /theeluwin/ universal-approximation-theorem-70937339 Jinseob Kim Journal Review 2017-2 Sep 12, 2017 8 / 38
  • 9. Introduction This paper: Physics perspective How can neural networks approximate functions well in practice? Expressibility: What class of functions can the neural network express? E?ciency: How many resources (neurons, parameters, etc) does the neural network require to approximate a given function? Learnability: How rapidly can the neural network learn good parameters for approximating a function? Jinseob Kim Journal Review 2017-2 Sep 12, 2017 9 / 38
  • 10. Expressibility and E?ciency of Shallow Neural Networks Expressibility and E?ciency of Shallow Neural Networks Jinseob Kim Journal Review 2017-2 Sep 12, 2017 10 / 38
  • 11. Expressibility and E?ciency of Shallow Neural Networks Summary 1 ?? f : (x, y) ¡ú xy ? ??? ??? ? ??. 2 Low polynomial: ????? ??? ??????? ??? 4 ???? ???, DL? ????. ????: e?x2 - 2?? 3 Locality: ?? ????? ???, ??? 2? ??? interaction ???.. 4 Symmetry: ???? ??? ???- parameter? ????. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 11 / 38
  • 12. Expressibility and E?ciency of Shallow Neural Networks Notation: Physics vs ML Jinseob Kim Journal Review 2017-2 Sep 12, 2017 12 / 38
  • 13. Expressibility and E?ciency of Shallow Neural Networks Hamiltonian: ??? H(x) = ?ln p(x) p(x) = e?H(x) ?) ???? p(x) = 1 ¡Ì 2¦Ð e?x2/2 H(x) = x2 2 + ln ¡Ì 2¦Ð Jinseob Kim Journal Review 2017-2 Sep 12, 2017 13 / 38
  • 14. Expressibility and E?ciency of Shallow Neural Networks Ex) Boltzman distribution ???? ??? ?? ???? ?? ?? p(E) ¡Ø e? E kT Jinseob Kim Journal Review 2017-2 Sep 12, 2017 14 / 38
  • 15. Expressibility and E?ciency of Shallow Neural Networks Example: Restricted Boltzman Machine(RBM) E(v, h) = ? i ai vi ? j bjhj ? i j vi wi,jhj P(v, h) = 1 Z e?E(v,h) P(v) = 1 Z h e?E(v,h)? ??? ?? ai , bj, wi,j?? ???. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 15 / 38
  • 16. Expressibility and E?ciency of Shallow Neural Networks Multiplication Gate: Easy ¦Ò(u) = ¦Ò0 + ¦Ò1u + ¦Ò2 u2 2 + O(n3 ) m(u, v) ¡Ô ¦Ò(u + v) + ¦Ò(?u ? v) ? ¦Ò(u ? v) ? ¦Ò(?u + v) 4¦Ò2 = uv[1 + O(u2 + v2 )] Jinseob Kim Journal Review 2017-2 Sep 12, 2017 16 / 38
  • 17. Expressibility and E?ciency of Shallow Neural Networks Low polynomial H(x) = h + i hi xi + i<j hijxi xj + i<j<k hijkxi xjxk + ¡¤ ¡¤ ¡¤ ?? ???? ????(Standard Model)?? ??? 4?? ??. ??????: ????? ?????? ???, ????? ?? 2 H(x) = h + i hi xi + i<j hijxi xj 2?? ??? ????? ?? ??. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 17 / 38
  • 18. Expressibility and E?ciency of Shallow Neural Networks Locality ???? ?? ?? ???? ??????. ?? ??? ??? ???? X H(x) = h + i hi xi + i<j hijxi xj + i<j<k hijkxi xjxk + ¡¤ ¡¤ ¡¤ ???? h?? 0? ??? ??. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 18 / 38
  • 19. Expressibility and E?ciency of Shallow Neural Networks Symmetry: Law of Nature ??????: ??????? ??????: ???????? ????: ??????? H(x) = h + i hi xi + i<j hijxi xj + i<j<k hijkxi xjxk + ¡¤ ¡¤ ¡¤ h? ? ?? ??? ?? ?. (ex: CNN) Jinseob Kim Journal Review 2017-2 Sep 12, 2017 19 / 38
  • 20. Why Deep? Why Deep? Jinseob Kim Journal Review 2017-2 Sep 12, 2017 20 / 38
  • 21. Why Deep? Summary: Layer ?? ??? ?? Hierarchical Processess ???? ?? No ?attening theorem Layer ?? ??? ??? parameter?? ??? ??? ? ??. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 21 / 38
  • 22. Why Deep? Jinseob Kim Journal Review 2017-2 Sep 12, 2017 22 / 38
  • 23. Why Deep? 1 ?????? ?? ????? ????(CMB) ??? ?? ?? ??? 2 ?? Frequency? ??: noise?? ???? ???? ?? 3 CMB SKY MAP : ?????? ?? ??? ?? ??? 4 ??????: ?? ??? ?? ??, ??, ??. . . 5 ???? ?? ??? vs ? ?? Jinseob Kim Journal Review 2017-2 Sep 12, 2017 23 / 38
  • 24. Why Deep? Su?cient Statistics and Hierarchies Su?cient Statistics T(x) P(y|x) = P(y|T(x)) y? ??? x? ??? T(x)? ?? ???? ??. ?: P(y|x) = ?ey??x ? ?, T(x) = ?x x? ??? ???. ???????? T(x)? ???. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 24 / 38
  • 25. Why Deep? Jinseob Kim Journal Review 2017-2 Sep 12, 2017 25 / 38
  • 26. Why Deep? Renormalization Group Theory ?????? ??? ??? ?? ? ??. ??? ?? ??. ??? ?? ????. Elementary Particle ¡ú atom ¡ú gas, liquid, solid (F = ma) Jinseob Kim Journal Review 2017-2 Sep 12, 2017 26 / 38
  • 27. Why Deep? Example: Block Spin renormalization ???? Grouping Jinseob Kim Journal Review 2017-2 Sep 12, 2017 27 / 38
  • 28. Why Deep? Example: Network renormalization Jinseob Kim Journal Review 2017-2 Sep 12, 2017 28 / 38
  • 29. Why Deep? Example: Box counting renormalization Jinseob Kim Journal Review 2017-2 Sep 12, 2017 29 / 38
  • 30. Why Deep? Jinseob Kim Journal Review 2017-2 Sep 12, 2017 30 / 38
  • 31. Why Deep? No ?attening theorem Layer ?? ??? ??? parameter?? ??? ??? ? ??. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 31 / 38
  • 32. Why Deep? ??: 1 layer & 4 nodes ???- n? ??? ?? 1 1 layer: 2n nodes ?? 2 n layer: 4n nodes ?? 2n > 4n Jinseob Kim Journal Review 2017-2 Sep 12, 2017 32 / 38
  • 33. Why Deep? Example: ???? 0,1?? ????? 1? ??? p? n ¡Á n??? ????. ?? F? ?? ???? ?? ? ??? ? AB? ???? ? ? ?? ??? 1? ?? ???? 1? ?? ??? ?? ????. p? ??? ??? ??. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 33 / 38
  • 34. Why Deep? AB? ? ??? ?? A? 1? ??: n2 ¡Á p B? 1? ??: n2 ¡Á p F = AB?? 1? ??: 2n2p Jinseob Kim Journal Review 2017-2 Sep 12, 2017 34 / 38
  • 35. Why Deep? F ??? ?? Fij = k AikBkj? 0? ??: (1 ? p2)n Fij = k AikBkj? 1? ??: 1 ? (1 ? p2)n F? 1? ??: n2 ¡Á (1 ? (1 ? p2)n) Jinseob Kim Journal Review 2017-2 Sep 12, 2017 35 / 38
  • 36. Why Deep? ?? 1? ?? 2? ?? = n2(1 ? (1 ? p2)n) 2n2p = 1 ? (1 ? p2)n 2p n? ??? ??? ? ?? 1 2p ? ????? 1?? ??. ??? 1? ??? ???? ?? ? ??????. Jinseob Kim Journal Review 2017-2 Sep 12, 2017 36 / 38
  • 37. Conclusions Conclusions Jinseob Kim Journal Review 2017-2 Sep 12, 2017 37 / 38
  • 38. Conclusions Swallow Neural Network? ?? ???? Log(p)? ??? ????? symmetry, low polynomial, locality? ?? ??. Deep Neural Network? ?? ???? Hierarchial Process No ?attening theorem Jinseob Kim Journal Review 2017-2 Sep 12, 2017 38 / 38