9. Introduction
This paper: Physics perspective
How can neural networks approximate functions well in practice?
Expressibility: What class of functions can the neural network express?
E?ciency: How many resources (neurons, parameters, etc) does the
neural network require to approximate a given function?
Learnability: How rapidly can the neural network learn good parameters
for approximating a function?
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 9 / 38
10. Expressibility and E?ciency of Shallow Neural Networks
Expressibility and E?ciency of Shallow Neural
Networks
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 10 / 38
14. Expressibility and E?ciency of Shallow Neural Networks
Ex) Boltzman distribution
???? ??? ?? ???? ?? ??
p(E) ¡Ø e? E
kT
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 14 / 38
15. Expressibility and E?ciency of Shallow Neural Networks
Example: Restricted Boltzman Machine(RBM)
E(v, h) = ?
i
ai vi ?
j
bjhj ?
i j
vi wi,jhj
P(v, h) =
1
Z
e?E(v,h)
P(v) = 1
Z h e?E(v,h)? ??? ?? ai , bj, wi,j?? ???.
Jinseob Kim Journal Review 2017-2 Sep 12, 2017 15 / 38