1. ? SIOS Technology, Inc. All rights Reserved.
1. BigData解析基盤としての
Treasure Data
2. HiveQLの周辺技術とTips
サイオステクノロジー株式会社
クラウドソリューション部
2013年6月11日
髙橋 達
サイオステクノロジー株式会社
2. ? SIOS Technology, Inc. All rights Reserved.
目的と目次
目 次
1. BigData解析基盤としてのTreasure Data
1. BigData解析基盤とは?
2. HiveQLの周辺技術とTips
1.~4. HiveQLの周辺技術
5.~11. HiveQLのTips
3. 発表のまとめ
2
Treasure DataとHiveQLに関する知識共有により,
レポーティング作業の効率アップ
目 的
3. ? SIOS Technology, Inc. All rights Reserved.
1.1. BigData解析基盤とは?
3
BigData COLLECT STORE
QUERY &
VISUALIZE
ANALYSIS
SNSやセンサ,
ログデータなど
様々なデータを
定期的?継続的
に収集
日々増え続ける
データの保管?
管理や、
可用性の保証
データ抽出?
可視化を
行うための
計算リソースや、
可視化ツールの
提供
データから有意
義な結果の発見
5. ? SIOS Technology, Inc. All rights Reserved.
2.2. MapReduce?Pig?Hiveの記述比較
例:単語の集計
Java For
MapReduce
(コードの1/6程度抜粋)
Job job = new Job(conf,
'wordcount');
job.setJarByClass(WordCou
nt.class);
job.setOutputKeyClass(Text
.class);
job.setOutputValueClass(In
tWritable.class);
job.setMapperClass(Map.cla
ss);
job.setCombinerClass(Redu
ce.class);
job.setReducerClass(Reduc
e.class);
HiveQL
select s.word, count(*) from
(select explode(split(text, '[ ?t]+')) word from
hello) s group by s.word;
5
b = foreach a generate flatten(TOKENIZE(text))
as word;
c = group b by word;
d = foreach c generate group as word, COUNT(b)
as count;
store d into ‘/output';
PigLatin
スクリプト引用:http://www.ne.jp/asahi/hishidama/home/tech/index.html
8. ? SIOS Technology, Inc. All rights Reserved.
2.5. Treasure Dataにおけるデータ形式
? 二つのカラムに格納(’v’と’time’)
? ‘v’カラムには、MAP形式で格納
? Key:v[‘host’], v[‘user’]
? Value:’1.1.0.1’, ‘ichi’
? カラムの参照
v[‘host’], v[‘user’], time
? 別名をカラム名として利用
v[‘host’] AS host
8
v time
{'host':'1.1.0.1','user':'ichi'} 1370420001
{'host':'1.1.0.2','user':'jiro'} 1370420010
{'host':'1.1.0.3','user':'sabu'} 1370420100
_c0
1.1.0.1
1.1.0.2
1.1.0.3
host
1.1.0.1
1.1.0.2
1.1.0.3
AS利用
AS未使用
9. ? SIOS Technology, Inc. All rights Reserved.
2.6. SELECT * と SELECT 項目指定
SELECT *
FROM tbl
? MapReduce処理を
実行しないで結果出力
? Hiveがスキーマを基に
結果を出力
SELECT カラム指定
FROM tbl
? MapReduce処理を
実行して結果出力
9
挙動に差異
? カラム指定より処理が速い
? MapReduceの起動等に
時間消費
? データの確認用に利用
<おまけ>
LIMITで結果の取得件数を制限
可能
SELECT * FROM tbl LIMIT 1
結果)
tblから1件のみ取得
10. ? SIOS Technology, Inc. All rights Reserved.
2.7. MapReduceの回数削減による効率化
重複カラムの除去でのLEFT SEMI JOIN
SELECT host AS host
FROM
(SELECT v[‘host’] AS host
FROM tbl1) JOIN
(SELECT v[‘host’] AS host
FROM tbl2 GROUP BY host
) ON tbl1.host = tbl2.host
SELECT host AS host
FROM
(SELECT v[‘host’] AS host
FROM tbl1) LEFT SEMI JOIN
(SELECT v[‘host’] AS host
FROM tbl2)
ON tbl1.host = tbl2.host
10
GROUP BYの利用 LEFT SEMI JOINの利用
v
{'host':'1.1.0.3‘, ‘user’:’taro’}
{'host':'1.1.0.1‘, ‘user’:’ichi’}
v time
{'host':'1.1.0.1‘} 1370420001
{'host':'1.1.0.1'} 1370420010
tbl1 tbl2
host
1.1.0.1
stage-1 : GROUP BY計算
stage-2 : JOIN計算
stage-1 : JOIN計算
処理数の削減
* 右テーブルのデータが左テーブル
に存在する場合のみ利用可能
11. ? SIOS Technology, Inc. All rights Reserved.
2.8.テーブルをメモリへ展開する
MAPJOINの利用
11
SELECT /*+MAPJOIN(tbl2)*/
host AS host FROM
(SELECT v[‘host’] AS host
FROM tbl1) LEFT SEMI JOIN
(SELECT v[‘host’] AS host
FROM tbl2) ON tbl1.host = tbl2.host
SELECT host AS host
FROM
(SELECT v[‘host’] AS host
FROM tbl1) LEFT SEMI JOIN
(SELECT v[‘host’] AS host
FROM tbl2) ON tbl1.host =
tbl2.host
MAPJOINの非利用 MAPJOINの利用
v
{'host':'1.1.0.3‘, ‘user’:’taro’}
{'host':'1.1.0.1‘, ‘user’:’ichi’}
v time
{'host':'1.1.0.1‘} 1370420001
{'host':'1.1.0.1'} 1370420010
tbl1 tbl2
host
1.1.0.1
stage-1 : JOIN計算
計算時間 小
→右テーブルをメモリ上に展開
stage-1 : JOIN計算
計算時間 大
* 右テーブルのデータがメモリに
収まりきるサイズであること
12. ? SIOS Technology, Inc. All rights Reserved.
2.9. 全体集計と個別集計
12
V
{‘user':‘taro‘, ‘cnt’:20’}
{‘user':‘ichi‘, ‘cnt’:’5’}
{‘user':‘ichi‘, ‘cnt’:’15’}
tbl
user count
NULL 40
taro 20
ichi 20
SELECT v[‘user’] AS user,
SUM(v[‘cnt’]) AS count
FROM tbl
GROUP BY v[‘host’]
WITH ROLLUP
SELECT u AS user, SUM(z) AS count
FROM tbl LATERAL VIEW
EXPLODE(ARRAY(v[‘user’], null)) e
AS u
group by u
ROLLUPの利用(Hive0.10未満) ROLLUPの利用 (Hive0.10以上)
*現在のTDでは利用不可*v[‘user’]は NOT NULL
13. ? SIOS Technology, Inc. All rights Reserved.
2.10. Treasure Dataが提供するUDF
(User Defined Functoins)
? TD_X_RANK(keys)
? ユーザ毎に番号付
? 時系列に並び替えることでパスの作成が可能
? TD_TIME_RANGE(time, start_time, end_time)
? WHERE句での時間による範囲指定
? TD_TIME_ADD(time, ‘期間’)
? 時間の様々な指定が可能
? N日後:’1d’, ‘2d’, ‘3d’,...
13
V
{‘user':‘taro‘, ‘ref’:’1.1.1.1’}
{‘user':‘ichi‘, ‘ref’:’1.1.1.2’}
{‘user':‘ichi‘, ‘ref’:’1.1.1.3’}
Rank User Ref
1 Taro 1.1.1.1
1 Ichi 1.1.1.2
2 Ichi 1.1.1.3
SELECT ... WHERE TD_TIME_RANGE(
Time, ‘2013-04-01’, TD_TIME_ADD(‘2013-04-01’, ‘1d’)
14. ? SIOS Technology, Inc. All rights Reserved.
2.11. その他のポイント(1/2)
? テーブル結合について
? UNION ALLのみ利用可能
? 重複を含む全レコードの結合
? 結合するテーブル全体を副問い合わせにすること
? JOIN ONのONを記述漏れは、CROSS JOINになる
? ON句では以下の二つは利用不可
? 不等号での結合
? ORによる二つの条件を用いた結合
? 正規表現について
? LIKE = SQLのLIKE
? ワイルドカード:*,%,?,_,#,[文字リスト],...
? RLIKEを用いると、Javaの正規表現を利用可能
? ワイルドカード:LIKE + α
14
15. ? SIOS Technology, Inc. All rights Reserved.
2.11. その他のポイント(2/2)
? 関数情報
? SHOW FUNCTIONS
?関数の一覧を表示(UDFも含む)
? DESC FUNCTION 関数名
DESC FUNCTION EXTENDED 関数名
?関数の情報を表示、EXTENDEDで使用例も表示
15
16. ? SIOS Technology, Inc. All rights Reserved.
3. 発表のまとめ
? ビッグデータ解析基盤に求められる機能:
? 各製品における各機能の詳細な比較が必要
? HiveQLのTips
? SQLと違いはあまりない
? MapReduceを意識することでクエリの効率化
? LEFT SEMI JOINの利用
? /*+ MAPJOIN(tbl) */の利用
? 全体集計と個別集計
? UDFについて
16
COLLECT STORE QUERY & VISUALIZE ANALYSIS