The document describes methods for generating position-specific scoring matrices (PSSMs) and weight matrices from alignments of transcription factor binding sites. It discusses calculating relative frequencies and corrected frequencies of residues at each position, and generating log-odds weight matrices using the Bernoulli assumption. The information content of each position is also described, which represents the specificity of each position based on the entropy of observed residues compared to background frequencies.
1 of 18
Download to read offline
More Related Content
01.4.pssm theory
1. Jacques.van.Helden@ulb.ac.be
Universit¨¦ Libre de Bruxelles, Belgique
Laboratoire de Bioinformatique des G¨¦nomes et des R¨¦seaux (BiGRe)
http://www.bigre.ulb.ac.be/
1
Position-specific scoring matrices (PSSM)
Regulatory sequence analysis
2. 2
.
Binding sites for the yeast Pho4p transcription factor
(Source : Oshima et al. Gene 179, 1996; 171-177)
Alignment of transcription factor binding sites
Gene Site Name Sequence Affinity
PHO5 UASp2 ---aCtCaCACACGTGGGACTAGC- high
PHO84 Site D ---TTTCCAGCACGTGGGGCGGA-- high
PHO81 UAS ----TTATGGCACGTGCGAATAA-- high
PHO8 Proximal GTGATCGCTGCACGTGGCCCGA--- high
group 1 consensus ---------gCACGTGgg------- high
PHO5 UASp1 --TAAATTAGCACGTTTTCGC---- medium
PHO84 Site E ----AATACGCACGTTTTTAATCTA medium
group 2 consensus --------cgCACGTTtt------- medium
Degenerate consensus ---------GCACGTKKk------- high-med
Non-binding sites
PHO5 UASp3 --TAATTTGGCATGTGCGATCTC-- No binding
PHO84 Site C -----ACGTCCACGTGGAACTAT-- No binding
PHO84 Site A -----TTTATCACGTGACACTTTTT No binding
PHO84 Site B -----TTACGCACGTTGGTGCTG-- No binding
PHO8 Distal ---TTACCCGCACGCTTAATAT--- No binding
IUPAC ambiguous nucleotide code
A A Adenine
C C Cy tosine
G G Guanine
T T Thy mine
R A or G puRine
Y C or T pYrimidine
W A or T Weak hy drogen bonding
S G or C Strong hy drogen bonding
M A or C aMino group at common position
K G or T Keto group at common position
H A, C or T not G
B G, C or T not A
V G, A, C not T
D G, A or T not C
N G, A, C or T aNy
3. Jacques.van.Helden@ulb.ac.be
Universit¨¦ Libre de Bruxelles, Belgique
Laboratoire de Bioinformatique des G¨¦nomes et des R¨¦seaux (BiGRe)
http://www.bigre.ulb.ac.be/
3
From alignments to weights
Regulatory sequence analysis
4. 4
Sequence logo
Tom Schneider¡¯s sequence logo
(generated with Web Logo http://weblogo.berkeley.edu/logo.cgi)
Count matrix (TRANSFAC matrix F$PHO4_01)
Residueposition 1 2 3 4 5 6 7 8 9 10 11 12
A 1 3 2 0 8 0 0 0 0 0 1 2
C 2 2 3 8 0 8 0 0 0 2 0 2
G 1 2 3 0 0 0 8 0 5 4 5 2
T 4 1 0 0 0 0 0 8 3 2 2 2
Sum 8 8 8 8 8 8 8 8 8 8 8 8
5. 5
Frequency matrix
Pos 1 2 3 4 5 6 7 8 9 10 11 12
A 0.13 0.38 0.25 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.13 0.25
C 0.25 0.25 0.38 1.00 0.00 1.00 0.00 0.00 0.00 0.25 0.00 0.25
G 0.13 0.25 0.38 0.00 0.00 0.00 1.00 0.00 0.63 0.50 0.63 0.25
T 0.50 0.13 0.00 0.00 0.00 0.00 0.00 1.00 0.38 0.25 0.25 0.25
Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A alphabet size (=4)
ni,j, occurrences of residue i at position j
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
Reference: Hertz (1999). Bioinformatics 15:563-577.
!
fi, j =
ni, j
ni, j
i=1
A
"
6. 6
Corrected frequency matrix
P
r
Pos 1 2 3 4 5 6 7 8 9 10 11 12
A 0.15 0.37 0.26 0.04 0.93 0.04 0.04 0.04 0.04 0.04 0.15 0.26
C 0.24 0.24 0.35 0.91 0.02 0.91 0.02 0.02 0.02 0.24 0.02 0.24
G 0.13 0.24 0.35 0.02 0.02 0.02 0.91 0.02 0.58 0.46 0.58 0.24
T 0.48 0.15 0.04 0.04 0.04 0.04 0.04 0.93 0.37 0.26 0.26 0.26
Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A alphabet size (=4)
ni,j, occurrences of residue i at position j
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'i,j corrected frequency of residue i at position j
Reference: Hertz (1999). Bioinformatics 15:563-577.
!
fi, j
'
=
ni, j + k /A
ni, j
i=1
A
" + k
!
fi, j
'
=
ni, j + pik
ni, j
i=1
A
" + k
1st option: identically
distributed pseudo-weight
2nd option: pseudo-weight distributed
according to residue priors
7. 7
Weight matrix (Bernoulli model)
Prior Pos 1 2 3 4 5 6 7 8 9 10 11 12
0.325 A -0.79 0.13 -0.23 -2.20 1.05 -2.20 -2.20 -2.20 -2.20 -2.20 -0.79 -0.23
0.175 C 0.32 0.32 0.70 1.65 -2.20 1.65 -2.20 -2.20 -2.20 0.32 -2.20 0.32
0.175 G -0.29 0.32 0.70 -2.20 -2.20 -2.20 1.65 -2.20 1.19 0.97 1.19 0.32
0.325 T 0.39 -0.79 -2.20 -2.20 -2.20 -2.20 -2.20 1.05 0.13 -0.23 -0.23 -0.23
1.000 Sum -0.37 -0.02 -1.02 -4.94 -5.55 -4.94 -4.94 -5.55 -3.08 -1.13 -2.03 0.19
A alphabet size (=4)
ni,j, occurrences of residue i at position j
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'i,j corrected frequency of residue i at position j
Wi,j weight of residue i at position j
!
Wi, j = ln
fi, j
'
pi
"
#
$
%
&
'
!
fi, j
'
=
ni, j + pik
nr, j
r=1
A
" + k
Reference: Hertz (1999). Bioinformatics 15:563-577.
The use of a weight matrix relies on
Bernoulli assumption
If we assume, for the background
model, an independent succession of
nucleotides (Bernoulli model), the
weight WS of a sequence segment S is
simply the sum of weights of the
nucleotides at successive positions of
the matrix (Wi,j).
In this case, it is convenient to convert
the PSSM into a weight matrix, which
can then be used to assign a score to
each position of a given sequence.
8. 8
Properties of the weight function
!
Wi, j = ln
fi, j
'
pi
"
#
$
%
&
'
!
fi, j
'
=
ni, j + pik
ni, j
i=1
A
" + k
fi, j
'
i=1
A
" =1 ? The weight is
? positive when f¡¯i,j > pi
(favourable positions for the binding of
the transcription factor)
? negative when f¡¯i,j < pi
(unfavourable positions)
9. Jacques.van.Helden@ulb.ac.be
Universit¨¦ Libre de Bruxelles, Belgique
Laboratoire de Bioinformatique des G¨¦nomes et des R¨¦seaux (BiGRe)
http://www.bigre.ulb.ac.be/
9
Information content
Regulatory sequence analysis
10. 10
Shannon uncertainty
? Shannon uncertainty
? Hs(j): uncertainty of a column of a PSSM
? Hg: uncertainty of the background (e.g. a
genome)
? Special cases of uncertainty
(for a 4 letter alphabet)
? min(H)=0
? No uncertainty at all: the nucleotide is
completely specified (e.g. p={1,0,0,0})
? H=1
? Uncertainty between two letters (e.g.
p={0.5,0,0,0.5})
? max(H) = 2 (Complete uncertainty)
? One bit of information is required to specify
the choice between each alternative (e.g.
p={0.25,0.25,0.25,0.25}).
? Two bits are required to specify a letter in a 4-
letter alphabet.
? Rseq
? Schneider (1986) defines an information
content based on Shannon¡¯s uncertainty.
? R*
seq
? For skewed genomes (i.e. unequal residue
probabilities), Schneider recommends an
alternative formula for the information content
. This is the formula that is nowadays used.
Adapted from Schneider (1986)
!
Hs j( )= " fi, j log2( fi, j )
i=1
A
#
Hg = " pi log2(pi)
i=1
A
#
Rseq j( ) = Hg " Hs j( ) Rseq = Rseq j( )
j=1
w
#
Rseq
*
j( ) = fi, j log2
fi, j
pi
$
%
&
'
(
)
i=1
A
# Rseq
*
= Rseq
*
j( )
j=1
w
#
11. 11
Schneider logos
? Schneider (1990) proposes a graphical representation based on his previous entropy (H) for
representing the importance of each residue at each position of an alignment. He provides a new
formula for Rseq
? Hs(j) uncertainty of column j
? Rseq(j) ¡°information content¡± of column j (beware, this de?nition differs from Hertz¡¯ information content)
? e(n) correction for small samples (pseudo-weight)
? Remarks
? This information content does not include any correction for the prior residue probabilities (pi)
? This information content is expressed in bits.
? Boundaries
? min(Rseq)=0 equiprobable residues
? max(Rseq)=2 perfect conservation of 1 residue with a pseudo-weight of 0,
? Sequence logos can be generated from aligned sequences on the Weblogo server
? http://weblogo.berkeley.edu/
!
Hs j( )= " fij log2( fij )
i=1
A
#
Rseq j( ) = 2 " Hs j( )+ e n( )
hij = fijRseq ( j)
Pho4p binding motif
13. 13
Information content
Prior Pos 1 2 3 4 5 6 7 8 9 10 11 12
0.325 A -0.12 0.05 -0.06 -0.08 0.97 -0.08 -0.08 -0.08 -0.08 -0.08 -0.12 -0.06
0.175 C 0.08 0.08 0.25 1.50 -0.04 1.50 -0.04 -0.04 -0.04 0.08 -0.04 0.08
0.175 G -0.04 0.08 0.25 -0.04 -0.04 -0.04 1.50 -0.04 0.68 0.45 0.68 0.08
0.325 T 0.19 -0.12 -0.08 -0.08 -0.08 -0.08 -0.08 0.97 0.05 -0.06 -0.06 -0.06
1.000 Sum 0.11 0.09 0.36 1.29 0.80 1.29 1.29 0.80 0.61 0.39 0.47 0.04
!
Imatrix = Ii, j
i=1
A
"
j=1
w
"
A alphabet size (=4)
ni,j, occurrences of residue i at position j
w matrix width (=12)
pi prior residue probability for residue i
fi,j relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'i,j corrected frequency of residue i at position j
Wi,j weight of residue i at position j
Ii,j information of residue i at position j
!
fi, j
'
=
ni, j + pik
ni, j
i=1
A
" + k
!
Ii, j = fi, j
'
ln
fi, j
'
pi
"
#
$
%
&
'
Reference: Hertz (1999).
Bioinformatics 15:563-577.
!
Ij = Ii, j
i=1
A
"
14. 14
Information content Iij of a cell of the matrix
? For a given cell of the matrix
? Iij is positive when f¡¯ij > pi
(i.e. when residue i is more frequent at position j than expected by chance)
? Iij is negative when f¡¯ij < pi
? Iij tends towards 0 when f¡¯ij -> 0 (because limitx->0 x*ln(x) = 0)
15. 15
Information content of a column of the matrix
? For a given column i of the matrix
? The information of the column (Ij) is the
sum of information of its cells.
? Ij is always positive
? Ij is always positive
? Ij is 0 when the frequency of all residues
equal their prior probability (fij=pi)
? Ij is maximal when
? the residue im with the lowest prior
probability has a frequency of 1
(all other residues have a frequency of 0)
? and the pseudo-weight is 0
!
Ij = Ii, j
i=1
A
" = fi, j
'
ln
fi, j
'
pi
#
$
%
&
'
(
i=1
A
"
!
im = argmini (pi ) k = 0
max(Ij )=1*ln(
1
pi
) = "ln(pi )
16. 16
!
Imatrix = Ii, j
i=1
A
"
j=1
w
"
!
P site( ) " e#Imatrix
Information content of the matrix
? The total information content represents the capability
of the matrix to make the distinction between a
binding site (represented by the matrix) and the
background model.
? The information content also allows to estimate an
upper limit for the expected frequency of the binding
sites in random sequences.
? The pattern discovery program consensus (developed
by Jerry Hertz) optimises the information content in
order to detect over-represented motifs.
? Note that this is not the case of all pattern discovery
programs: the gibbs sampler algorithm optimizes a
log-likelihood.
Reference: Hertz (1999). Bioinformatics 15:563-577.
17. 17
Information content: effect of prior probabilities
? The upper bound of Ij increases when pi decreases
? Ij -> Inf when pi -> 0
? The information content, as defined by Gerald Hertz, has thus no upper bound.
18. 18
References - PSSM information content
? Papers by Tom Schneider
? Schneider, T.D., G.D. Stormo, L. Gold, and A. Ehrenfeucht. 1986.
Information content of binding sites on nucleotide sequences. J Mol Biol
188: 415-431.
? Schneider, T.D. and R.M. Stephens. 1990. Sequence logos: a new way
to display consensus sequences. Nucleic Acids Res 18: 6097-6100.
? Tom Schneider¡¯s publications online
? http://www.lecb.ncifcrf.gov/~toms/paper/index.html
? Papers by Gerald Hertz
? Hertz, G.Z. and G.D. Stormo. 1999. Identifying DNA and protein
patterns with statistically significant alignments of multiple sequences.
Bioinformatics 15: 563-577.