際際滷

際際滷Share a Scribd company logo
0514 presentation
覈: 蠍一 覦郁鍵 襾碁Μ
襾語 蠍磯 
煙 覿襯
 螳
Name: 焔
Grade: 4
Name: ′綾
Grade: 4
Name: 蟾
Grade: 2
覈
 襾語 (Machine Learning) 蠍磯 譴, Deep Neural Network(DNN)
蟲譟磯ゼ 伎 煙襯 覿襯
 煙襯 class襦 覿襯, 觜訣蟆  malwareる 螳
 class襦 覿襯蟆 旧れ

 煙(malware): 貉危 覦企,   貉危 蟆 
襯 殊 覈 貊 豐豺
  覿(static analysis) 
 煙 hexa dump file,  assembly file 轟(feature)
 豢豢

 Kaggle 螻牛 煙 
 AI 蟯 global contest 郁規襯 讌 貉るる
 https://www.kaggle.com/c/malware-classification
瑚概讌(AI, Artificial Intelligence)
レ 譯殊伎覃 豢レ 企慨碁.
襾語(ML, Machine Learning)
襾語(ML, Machine Learning)
襾語(ML, Machine Learning)
螻給 朱襖 一危
Deep Neural Network
Hidden layer螳 2螳 伎 NN
Used feature
 煙 レ
Used feature
 煙 伎觚襴
Used feature
 伎觚襴  -> 螳 instruction 豢豢 unigram 蠍磯 
 feature
 レ  -> 2byte 伎 counting vector 
 レ  -> 覦危 れ FF襯 search -> FF   覦
碁ゼ  覓語企 伎 -> counting vector
ろ
 Train file #: 10868, Test file #: 10873
 Input layer node # : 10000
 Hidden layer #: 7
Layer 1: 10000 / 2
Layer 2: 10000 / 4
Layer 3: 10000 / 8
Layer 4: 10000 / 4
Layer 5: 10000 / 2
Layer 6: 10000
Layer 7: 10000 * 2
 Learning rate: 0.00001, dropout prob = 0.5
 Epoch #: 7000
 Mini-batch size: 128 螳
蟆郁骸
 Kaggle site 豈 企骸  
 =  98.83
螳矧

More Related Content

0514 presentation

Editor's Notes

  • #5: 煙襯 覿襯 伎 る