際際滷
Submit Search
0514 presentation
Download as PPTX, PDF
0 likes
110 views
譴仰
譴仰 覈
Follow
seongmin jeong, duriton, 170514
Read less
Read more
1 of 18
Download now
Download to read offline
More Related Content
0514 presentation
2.
覈: 蠍一 覦郁鍵
襾碁Μ 襾語 蠍磯 煙 覿襯
3.
螳 Name: 焔 Grade:
4 Name: ′綾 Grade: 4 Name: 蟾 Grade: 2
4.
覈 襾語 (Machine
Learning) 蠍磯 譴, Deep Neural Network(DNN) 蟲譟磯ゼ 伎 煙襯 覿襯 煙襯 class襦 覿襯, 觜訣蟆 malwareる 螳 class襦 覿襯蟆 旧れ
5.
煙(malware): 貉危
覦企, 貉危 蟆 襯 殊 覈 貊 豐豺 覿(static analysis) 煙 hexa dump file, assembly file 轟(feature) 豢豢
6.
Kaggle 螻牛
煙 AI 蟯 global contest 郁規襯 讌 貉るる https://www.kaggle.com/c/malware-classification
7.
瑚概讌(AI, Artificial Intelligence) レ
譯殊伎覃 豢レ 企慨碁.
8.
襾語(ML, Machine Learning)
9.
襾語(ML, Machine Learning)
10.
襾語(ML, Machine Learning)
11.
螻給 朱襖 一危
12.
Deep Neural Network Hidden
layer螳 2螳 伎 NN
13.
Used feature 煙
レ
14.
Used feature 煙
伎觚襴
15.
Used feature 伎觚襴
-> 螳 instruction 豢豢 unigram 蠍磯 feature レ -> 2byte 伎 counting vector レ -> 覦危 れ FF襯 search -> FF 覦 碁ゼ 覓語企 伎 -> counting vector
16.
ろ Train file
#: 10868, Test file #: 10873 Input layer node # : 10000 Hidden layer #: 7 Layer 1: 10000 / 2 Layer 2: 10000 / 4 Layer 3: 10000 / 8 Layer 4: 10000 / 4 Layer 5: 10000 / 2 Layer 6: 10000 Layer 7: 10000 * 2 Learning rate: 0.00001, dropout prob = 0.5 Epoch #: 7000 Mini-batch size: 128 螳
17.
蟆郁骸 Kaggle site
豈 企骸 = 98.83
18.
螳矧
Editor's Notes
#5:
煙襯 覿襯 伎 る
Download