ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
6
BAB II
Tinjauan Pustaka
2.1 Metode Kuadrat Terkecil (MKT)
Analisis regresi adalah analisis statistika yang bertujuan untuk memodelkan
hubungan antara variabel bebas dengan variabel tak bebas. Istilah regresi pertama
kali dikenalkan oleh Francis Galton melalui artikelnya yang berjudul Regression
Towards Mediocrity In Hereditary Stature. Apabila kita dihadapkan pada suatu
masalah penaksiran atau peramalan nilai suatu variabel, katakanlah Y, berdasarkan
variabel lain, X. Secara umum, variabel tak bebas dapat dihubungkan oleh k buah
variabel bebas, X1, X2, …, Xk, maka model yang digunakan adalah:
𑌠= ð›½0 + ð›½1 ð‘‹1 + ð›½2 ð‘‹2 + ⋯ + 𛽠𑘠𑋠𑘠+ 𜀠(2.1)
Model di atas yang disebut sebagai model regresi linier berganda karena
melibatkan lebih dari satu variabel bebas. Jika dinyatakan dalam bentuk matriks,
maka model regresi dapat ditulis sebagai berikut :
Y = Xβ + ε, atau
[
ð‘Œ1
ð‘Œ2
…
ð‘Œð‘˜
] = [
1 ð‘‹11 … ð‘‹1ð‘˜
1 ð‘‹21 … ð‘‹2ð‘˜
… …
1 ð‘‹ð‘–1 ð‘‹ð‘–ð‘˜
] [
ð›½0
ð›½1
…
𛽠ð‘˜
] + [
ðœ€1
ðœ€2
…
ðœ€ð‘–
]
dimana Y adalah vektor berdimensi n dan X adalah matriks berukuran n x p dengan
pangkat (rank) sama dengan p=k+1, β adalah vektor koefisien regresi, E (ε) = 0 dan
Var (ε) = ðœŽ2
ð¼. Koefisien regresi β dapat ditaksir menggunakan MKT dengan rumus,
ð›½Ì‚ = (ð‘‹ ð‘¡
ð‘‹)−1
(ð‘‹ ð‘¡
ð‘Œ)
MKT merupakan metode penaksiran parameter yang meminimalkan jumlah
kuadrat sisaan (galat). Metode ini merupakan kelas penaksir yang memiliki sifat
repository.unisba.ac.id
7
BLUE. Menurut teorema Gauss-Markov, setiap penaksir MKT yang asumsinya
terpenuhi akan bersifat BLUE (Best Linear Unbiased Estimator).
Dalam melakukan penaksiran interval dan pengujian parameter regresi, ada
asumsi-asumsi yang harus dipenuhi. Asumsi regresi dengan menggunakan MKT
adalah :
1. Galat berdistribusi normal dengan rata-rata nol, ðœ€ð‘– ~N(0,ðœŽðœ€
2
).
2. Galat mempunyai varians konstan untuk semua observasi, Var(ðœ€ð‘–) = ðœŽ2
.
Asumsi ini menyatakan bahwa varians ðœ€ð‘– adalah suatu angka konstan positif
yang sama dengan ðœŽ2
. Asumsi ini dikenal dengan asumsi homoskedastisitas,
atau varians yang sama. Ini berarti bahwa untuk setiap Y yang berhubungan
dengan berbagai nilai X mempunyai varians yang sama.
3. Galat pada suatu observasi saling bebas atau tidak berkorelasi, Cov(ðœ€ð‘–, ðœ€ð‘—) = 0,
untuk i≠j. Asumsi ini menyatakan bahwa galat ke-i dan ke-j tidak berkorelasi.
Asumsi ini dikenal dengan asumsi tidak adanya autokorelasi.
4. Tidak ada hubungan linier (multikolinieritas) diantara variabel- variabel bebas.
Model regresi dikatakan terkena multikolinieritas bila terjadi hubungan linier
yang sempurna dan pasti, diantara beberapa atau semua variabel bebas dari
model regresi.
2.2 Pemeriksaan Asumsi Normalitas dan Multikolinieitas
Berikut merupakan beberapa cara untuk mendeteksi pelanggaran asumsi MKT
yang dapat dilakukan dengan cara sebagai berikut;
a. Normalitas
Uji normalitas dimaksudkan untuk mengetahui apakah galat berdistribusi
normal atau tidak berdistribusi normal, E(ðœ€ð‘–) ~ 0. Pengujian normalitas dapat
repository.unisba.ac.id
8
dilakukan menggunakan uji Kolmogorov-Smirnov. Ketentuan dalam pengujian
normalitas Kolmogorov-Smirnov yaitu apabila nilai p-value yang dihasilkan
melalui Kolmogorov-Smirnov adalah lebih besar dari α yang telah ditentukan
yaitu sebesar 0,05 maka galat berdistribusi normal. Tetapi sebaliknya bila nilai
p-value lebih kecil dari α yang telah ditentukan, maka galat tidak berdistribusi
normal.
b. Multikolinieritas
Analisis multikolinieritas bertujuan untuk melihat apakah dalam model regresi
ditemukan adanya kekolinieran antar variabel bebas. Model regresi yang baik
seharusnya tidak ada multikolinieritas di antara variabel bebas.
2.3 Multikolinieritas
Istilah multikolinieritasitas pertama kali ditemukan oleh Ragnar Frisch pada
tahun 1934 yang berarti adanya hubungan linier diantara beberapa atau semua
variabel bebas dalam model regresi. Masalah multikolinieritas hanya akan muncul
pada model regresi linier berganda. Model yang baik adalah model yang bebas
multikolinieritas. Suatu model yang bebas multikolinieritas adalah model yang
memiliki nilai Faktor Variance Inflation Factors (VIF) > 10 mengindikasikan
terdapatnya multikolinieritas (Myers, 1990).
Jika terdapat masalah multikolinieritas diantara variabel bebas, akibatnya akan
berbahaya, karena akan menghasilkan penaksir yang tidak stabil dan mungkin jauh
dari nilai sasaran (Gunst and Mason, 1980).
Salah satu cara untuk mendeteksi adanya masalah multikolinieritas yaitu
menggunakan Variance Inflation Factors (VIF). Karena multikolinieritas disebabkan
adanya satu atau lebih variabel bebas yang berhubungan linier sempurna atau
repository.unisba.ac.id
9
mendekati sempurna dengan variabel bebas lainnya, salah satu cara untuk
mengetahuinya adalah dengan meregresikan setiap variabel bebas terhadap variabel
bebas lainnya. Misalkan ð‘… ð‘˜
2
adalah koefisien determinasi yang diperoleh dari regresi
𑋠𑘠sebagai variabel bebas terhadap variabel bebas X yang lainnya.
Rumus VIF adalah
ð‘‰ð¼ð¹ð‘˜ =
1
1−𑅠ð‘˜
2 (2.2)
Nilai VIF yang lebih besar dari 10 dapat dijadikan indikasi bahwa ada masalah
multikolinieritas diantara variabel bebas (Neter, et. al., 1990, Myers, 1998).
2.4 Pemeriksaan Data Berpengaruh
Istilah pencilan (outliers) merujuk pada suatu pengamatan yang dalam
beberapa hal tidak konsisten dengan observasi lainnya yang ada dalam suatu data.
Suatu pengamatan dapat dikatakan sebagai data pencilan dikarenakan oleh variabel
tak bebas atau satu atau lebih variabel bebas mempunyai nilai yang jauh lebih besar
atau jauh lebih kecil dari nilai-nilai lainnya. Sedangkan istilah pencilan dalam galat
merujuk pada titik data yang galat pengamatannya lebih besar daripada apa yang
diharapkan dari keragaman acak itu sendiri. Kemudian, istilah data yang berpotensi
sebagai data berpengaruh digunakan pada suatu pengamatan yang merupakan data
pencilan dalam satu atau lebih variabel bebas. Dengan demikian penggunaan istilah
menjadi jelas apakah data pencilan itu merujuk pada nilai dari variabel tak bebas atau
galat. Pendeteksian pencilan dapat dilakukan dengan melihat leverage value dan nilai
TRES.
Metode kuadrat terkecil biasa mempunyai asumi-asumsi yang beberapa
diantaranya sering tidak dapat dipenuhi. Salah satu asumsi tersebut adalah mengenai
kenormalan yang sering dilanggar ketika adanya pengamatan yang bersifat pencilan.
repository.unisba.ac.id
10
Akibat dari adanya pencilan, galat ðœ€ð‘– tidak lagi berdistribusi normal. Dengan kondisi
demikian, pengujian signifikansi parameter regresi selang kepercayaan akan menjadi
tidak valid (Rousseeuw, 1984).
Metode yang digunakan dalam mengidentifikasi pencilan terhadap variabel X
adalah nilai pengaruh (leverage value). Nilai pengaruh (â„Žð‘–ð‘–) dari pengamatan (ð‘‹ð‘–, ð‘Œ)
menunjukkan besarnya peranan𑌠terhadap ð‘ŒÌ‚ dan didefinisikan sebagai,
â„Žð‘–ð‘– = ð‘¥ð‘–
ð‘¡
(ð‘‹ ð‘¡
ð‘‹)−1
ð‘¥ð‘– (2.3)
Dengan i = 1,2, . . . , n, ð’™ð’Š
ð‘»
= [ð‘‹ð‘–1 ð‘‹ð‘–2 … ð‘‹ð‘–ð‘˜] adalah vektor baris yang berisi
nilai – nilai dari k variabel bebas pada pengamatan ke-i. Nilai â„Žð‘–ð‘– berada diantara 0
dan 1, yaitu 0 ≤ â„Žð‘–𑖠≤ 1. Jika â„Žð‘–ð‘– lebih besar dari
2ð‘
ð‘›
, dengan ð‘ = 𑘠+ 1 maka
pengamatan ke-i dikatakan pencilan terhadap X.
Menurut Draper dan Smith (1998) metode yang digunakan dalam
mengidentifikasi pencilan terhadap variabel Y adalah Studentized Deleted Residual
(TRES) yang didefinisikan sebagai:
ð‘‡ð‘…ð¸ð‘†ð‘– = ðœ€ð‘– [
𑛠− ð‘˜
ð½ð¾ð‘†(1−ℎ ð‘–ð‘–)−𜀠ð‘–
2]
1
2
; 𑖠= 1, 2, … , 𑛠(2.4)
Dimana,
ðœ€ð‘– = ð‘Œð‘– − ð‘ŒÌ‚ð‘–
ð‘› = banyaknya pengamatan
k = banyaknya variabel bebas
JKS = Jumlah Kuadrat Sisa.
Hipotesis untuk menguji adanya pencilan:
ð»0 ∶ Pengamatan ke – i bukan pencilan
ð»1 ∶ Pengamatan ke – i merupakan pencilan
repository.unisba.ac.id
11
TRES adalah statistik uji untuk mengetahui pencilan terhadap Y. Kriteria uji
yang melandasi keputusan adalah tolak ð»0 jika nilai |ð‘‡ð‘…ð¸ð‘†ð‘–| ≤ ð‘¡(
ð›¼
2
,ð‘›âˆ’ð‘˜âˆ’1) , dan
terima ð»0 jika nilai |ð‘‡ð‘…ð¸ð‘†ð‘–| > ð‘¡(
ð›¼
2
,ð‘›âˆ’ð‘˜âˆ’1). Dimana ð‘¡ ð›¼
2
adalah distribusi t-student.
Secara umum pencilan tidak selalu merupakan pengamatan berpengaruh
ataupun sebaliknya. Kutner et. al, (2004) menjelaskan bahwa pencilan berpengaruh
merupakan pencilan sekaligus pengamatan berpengaruh. Pendeteksian pengamatan
berpengaruh dapat ditentukan diantaranya melalui nilai DFFITS, DFBETAS, Cook’s
Distance dan Covratio. DFFITS digunakan untuk mengetahui pengaruh suatu
pengamatan ke-i terhadap model regresi yang ditinjau dari nilai taksirannya.
Besarnya nilai DFFITS adalah:
DFFITSi = (ð‘…ð‘†ð‘¡ð‘¢ð‘‘ð‘’ð‘›ð‘¡)ð‘–√
â„Ž ð‘–ð‘–
1−ℎ ð‘–ð‘–
(2.5)
Dalam rumus di atas R-Student merupakan ukuran pencilan (dalam variabel y
atau variabel tak bebas) dan â„Žð‘–ð‘– yang merupakan indikator pencilan dalam variabel X
atau variabel bebas. Suatu pengamatan ke-i dikatakan berpengaruh apabila
pengamatan tersebut memiliki nilai |DFFITSi| > 2/√ 𑛠(Hajarisman, 2010).
DFBETAS digunakan untuk menyatakan pengaruh suatu pengamatan ke-i
terhadap koefisien ke-k. Besarnya nilai DFBETAS adalah:
DFBETASk,i =
ð‘ ð‘˜âˆ’ð‘ ð‘˜,−ð‘–
ð‘ ð‘–√ ð‘ ð‘˜ð‘˜
(2.6)
dimana ð‘ ð‘˜ð‘˜ adalah unsur diagonal ke-k matrik (ð‘‹ ð‘¡
ð‘‹)−1
Karena ð‘ ð‘˜,−𑖠adalah
koefisien regresi variabel bebas ke-k yang diperoleh tanpa mengikutsertakan
pengamatan ke-i, maka DFBETASk,i dapat diartikan sebagai besarnya perubahan
yang terjadi terhadap koefisien regresi ð‘ 𑘠jika pengamatan ke-i tidak diikutsertakan
dalam pendugaan model regresi. Suatu pengamatan ke-i dikatakan berpengaruh
repository.unisba.ac.id
12
terhadap koefisien ke-k apabila pengamatan tersebut memiliki nilai |DFBETASk,i| >
2√ð‘ ð‘›â„ (Hajarisman, 2010).
2.5 Penaksir Regresi Ridge
Salah satu masalah utama dalam metode penaksir regresi adalah
multikolinieritasitas. Multikolinieritas adalah istilah yang digunakan untuk
menggambarkan kasus dimana variabel bebas terdapat suatu pola korelasi. Terdapat
beberapa teknik atau metode untuk mengatasi masalah multikolinieritas. Model
regresi ridge telah dianjurkan dalam literatur sebagai alternatif penaksir MKT untuk
masalah multikolinieritasitas (Hoerl & Kennard, 1970).
Pendekatan umum termasuk mengumpulkan data tambahan, modifikasi model,
dan penggunaan metode penaksiran. Metode penaksiran yang biasa digunakan untuk
menangani masalah multikolinieritasitas diantaranya adalah metode regresi ridge.
Metode regresi ridge dikembangkan oleh Hoerl dan Kennard dengan cara
menambahkan konstanta yang bernilai positif 𜆠terhadap elemen diagonal ð‘‹ ð‘¡
ð‘‹.
Meskipun metode ini menghasilkan penaksir koefisien regresi yang bias, tetapi
penaksir ini bisa mendekati nilai parameter yang sebenarnya. Hal ini dapat diketahui
dari perbandingan mean square error (MSE) antara penaksir Ridge dengan penaksir
MKT. Jika MSE penaksir ridge lebih kecil daripada MSE MKT, maka akan
diperoleh penaksir yang mendekati nilai parameter yang sebenarnya.
Menurut Kutner, et. al. (2005), penaksiran parameter regresi ridge dilakukan
dengan cara menstandarisasi variabel bebas dan variabel tak bebas dengan model:
ð‘¦ð‘–
∗
= ð›½1
∗
ð‘¥ð‘–1
∗
+ ð›½2
∗
ð‘¥ð‘–2
∗
+ ⋯ + 𛽠ð‘˜
∗
ð‘¥ð‘–ð‘˜
∗
+ 𜀠(2.7)
dimana,
ð‘¦ð‘–
∗
=
𑦠ð‘–
𑆠ð‘¦
=
𑌠ð‘–−ð‘ŒÌ…
𑆠ð‘¦
(2.8)
repository.unisba.ac.id
13
ð‘¥ ð‘˜
∗
=
ð‘¥ ð‘˜
𑆠𑥠ð‘˜
=
ð‘‹ ð‘˜âˆ’ð‘‹Ì… ð‘˜
𑆠𑥠ð‘˜
(2.9)
Keterangan:
ð‘¦ð‘–
∗
: nilai variabel bebas pengamatan ke- i hasil transformasi
ð‘Œð‘– : nilai variabel tak bebas pengamatan ke-i
ð‘ŒÌ… : rata-rata variabel tak bebas
ð‘› : Jumlah Observasi
𑆠𑦠: √∑ (ð‘Œð‘˜ − ð‘ŒÌ…)2ð‘›
ð‘–=1 /(n − 1) (2.10)
ð‘¥ð‘–ð‘˜
∗
: nilai variabel bebas ke- k pengamatan ke- i hasil transformasi
ð‘‹Ì… 𑘠: rata-rata variabel bebas ke- k
𑆠𑥠ð‘˜
: √∑ (ð‘‹ð‘–𑘠− ð‘‹Ì… ð‘˜)2ð¾
ð‘˜=1 /(n − 1) (2.11)
Penaksir regresi ridge bagi ð›½Ì‚ untuk MKT adalah:
ð›½Ì‚ ð‘… = (ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ 𜆠ð¿ð‘† ð¼)−1
ð‘‹âˆ—ð‘¡
ð‘Œâˆ—
(2.12)
Dimana,
ð‘Œâˆ—
= (
ð‘¦1
∗
ð‘¦2
∗
â‹®
𑦠ð‘˜
∗
) ð‘‹âˆ—
= (
ð‘¥11
∗
ð‘¥12
∗ ⋯ ð‘¥1ð‘˜
∗
ð‘¥21
∗
ð‘¥22
∗ ⋯ ð‘¥2ð‘˜
∗
â‹®
ð‘¥ð‘–1
∗
â‹®
ð‘¥ð‘–2
∗
⋱ ⋮
⋯ ð‘¥ð‘–ð‘˜
∗
)
𜷠𑹠= (
ð›½1
∗
ð›½2
∗
â‹®
𛽠ð‘˜
∗
)
Dimana I adalah matriks identitas berukuran (k x k) dan 𜆠adalah sebuah
bilangan yang positif atau 𜆠≥ 0 , umumnya 𜆠terletak antara interval 0 < 𜆠< 1.
Dalam prakteknya, nilai optimal 𜆠tidak diketahui. Oleh karena itu berbagai metode
dalam menentukan 𜆠telah muncul dalam literatur seperti yang dijelaskan Hoerl and
Kennard (1970) dan Gibbons (1981).
repository.unisba.ac.id
14
Dalam persamaan (2.12) salah satu penaksir 𜆠diusulkan oleh Hoerl et. al.
(1975) seperti berikut ini,
𜆠ð¿ð‘† =
ð‘ð‘  ð¿ð‘†
2
ð›½Ì‚
ð¿ð‘†
𑇠ð›½Ì‚ ð¿ð‘†
(2.13)
Dimana ð‘  ð¿ð‘†
2
=
(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘†) ð‘‡(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘†)
ð‘›âˆ’ð‘ƒ
(2.14)
Saat 𜆠= 0, ð›½Ì‚ ð‘… = ð›½Ì‚ ð¿ð‘†, jika 𜆠> 0, ð›½Ì‚ ð‘… bias tetapi lebih stabil dan tepat daripada
penaksir MKT dan ketika 𜆠→ ~, ð›½Ì‚ 𑅠→ 0.
Dari persamaan (2.7) dapat dibentuk menjadi:
ð‘Œð‘–−ð‘ŒÌ… ð‘–
𑆠ð‘¦
= ð›½1
∗
(
ð‘‹1ð‘˜âˆ’ð‘‹Ì…1
ð‘†1
) + ð›½2
∗
(
ð‘‹2ð‘˜âˆ’ð‘‹Ì…2
ð‘†2
) + ⋯ + 𛽠ð‘˜
∗
(
ð‘‹ð‘–ð‘˜âˆ’ð‘‹Ì… ð‘˜
𑆠ð‘˜
) (2.15)
ð‘Œð‘– − ð‘ŒÌ… = ð›½1
∗ 𑆠ð‘¦
𑆠ð‘¥1
(ð‘‹1 − ð‘‹Ì…1) + ð›½2
∗ 𑆠ð‘¦
𑆠ð‘¥2
(ð‘‹2 − ð‘‹Ì…2) + ⋯ + 𛽠ð‘˜
∗ 𑆠ð‘¦
𑆠𑥠ð‘˜
(ð‘‹ð‘– − ð‘‹Ì… ð‘˜)
ð‘Œð‘– = ð‘ŒÌ… − (ð›½1
∗ 𑆠ð‘¦
𑆠ð‘¥1
ð‘‹Ì…1 + ð›½2
∗ 𑆠ð‘¦
𑆠ð‘¥2
ð‘‹Ì…2 + ⋯ + 𛽠ð‘˜
∗ 𑆠ð‘¦
𑆠𑥠ð‘˜
ð‘‹Ì… ð‘˜)
+ð›½1
∗ 𑆠ð‘¦
𑆠ð‘¥1
ð‘‹1 + ð›½2
∗ 𑆠ð‘¦
𑆠ð‘¥2
ð‘‹2 + ⋯ + 𛽠ð‘˜
∗ 𑆠ð‘¦
𑆠ð‘˜
(𑋠𑘠− ð‘‹Ì… ð‘˜)𑋠𑘠(2.16)
Dari model di atas maka dapat diubah menjadi,
ð›½Ì‚0 = ð‘ŒÌ… − ð›½Ì‚1 ð‘‹Ì…1 + ð›½Ì‚2 ð‘‹Ì…2 + ⋯ + ð›½Ì‚ 𑘠ð‘‹Ì… ð‘˜
ð›½Ì‚0 = ð‘ŒÌ… − ∑ 𛽠𑘠ð‘‹Ì… ð‘˜
ð¾
ð‘˜=1 (2.17)
ð›½Ì‚ 𑘠= (
𑆠ð‘¦
𑆠𑥠ð‘˜
) 𛽠ð‘˜
∗
; k = 1,2,....K (2.18)
Persamaan (2.17) dan (2.18) merupakan rumus untuk mengembalikan model
regresi ridge ke model asalnya. Setelah nilai ð›½Ì‚ didapatkan, maka model regresi
berganda yang siap digunakan untuk penaksir (Neter hal. 414).
ð‘ŒÌ‚ð‘– = ð›½Ì‚0 + ð›½Ì‚1 ð‘‹1 + ð›½Ì‚2 ð‘‹2 + ⋯ + ð›½Ì‚ 𑘠𑋠𑘠(2.19)
Sifat bias dari penaksir ð›½Ì‚ ð‘…:
ð¸(ð›½Ì‚ ð‘…) = ð¸((ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
ð‘‹âˆ—ð‘¡
ð‘Œâˆ—) dengan ð‘Œâˆ—
= ð‘‹âˆ—
ð›½Ì‚
= ð¸((ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
ð›½Ì‚)
repository.unisba.ac.id
15
= ð¸((ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1[(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—) + ðœ†ð¼ − ðœ†ð¼]ð›½Ì‚)
= ð¸((ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
ð›½Ì‚ + ðœ†(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
ð›½Ì‚ − ðœ†(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
ð›½Ì‚)
= ð¸((ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
ð›½Ì‚ + ðœ†ð¼ð›½Ì‚) − ðœ†(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
ð›½Ì‚)
= ð¸((ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)ð›½Ì‚ − ðœ†(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
ð›½Ì‚)
= ð¸(ð›½Ì‚ − ðœ†(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
ð›½Ì‚)
= 𛽠− ðœ†(ð‘‹âˆ—ð‘¡
ð‘‹âˆ—
+ ðœ†ð¼)−1
𛽠(2.20)
2.6 Penaksir Regresi Robust
Sebuah pengamatan yang berbeda dari sekumpulan data lainnya atau dikatakan
pencilan, dapat berpengaruh besar pada analisis regresi. Pencilan dapat menyebabkan
hal–hal berikut:
1. Galat yang besar dari model yang terbentuk atau E[ðœ€] ≠ 0,
2. Varians pada data tersebut menjadi lebih besar,
3. Taksiran interval akan memiliki rentang yang lebar.
Regresi robust diperkenalkan oleh Andrews (1978) sebagai model regresi
yang digunakan apabila distribusi dari galat tidak normal atau adanya beberapa
pencilan yang berpengaruh pada model. Metode ini merupakan alat penting untuk
menganalisis data yang dipengaruhi oleh pencilan sehingga dihasilkan model yang
robust terhadap pencilan (Draper and Smith, 1998).
Dalam regresi robust terdapat beberapa metode penaksiran parameter seperti
penaksir Least Absolute Value (LAV), penaksir Least Median Square (LMS), dan
penaksir Least Trimmed Square (LTS) (Chen, 2002).
a. Penaksir Least Absolute Value (LAV)
Least Absolute Value dikenal dengan berbagai nama, yaitu Minimum Absolute
Deviation regression, regresi Least Absolute Deviation (LAD), dan regresi
repository.unisba.ac.id
16
Minimum Sum of Absolute Errors. Dielman (1984) menyatakan bahwa
penaksir LAV untuk mendapatkan penaksir β adalah meminimalkan jumlah
nilai mutlak dari galat (ðœ€ð‘–) yaitu:
ð›½Ì‚ = min ∑ |ðœ€ð‘–|ð‘›
ð‘–=1
= min ∑ |ð‘¦ð‘– − ð‘¥ ð‘˜
ð‘¡
ð›½|ð‘›
ð‘–=1 (2.21)
dengan k = 1, 2, ..., K dan k adalah banyak variabel bebas. Jika k ≥ 2 maka
untuk mendapatkan 𛽠adalah dengan menggunakan metode regresi LAV
berganda. LAV kuat untuk sebuah pencilan dalam y. Tetapi, LAV tidak dapat
melindungi terhadap pencilan x (leverage).
b. Penaksir Least Median Square (LMS)
Metode Least Median Square (LMS) merupakan salah satu jenis regresi robust
dengan high breakdown point. Menurut Venables dan Ripley (1999),
Algoritma ini meminimumkan median kuadrat galat dari i pengamatan untuk
mendapatkan koefisien regresi β , yaitu:
ð›½Ì‚ = min ð‘šð‘’ð‘‘ð‘–ð‘Žð‘› (ðœ€ð‘–
2
) = min ð‘šð‘’ð‘‘ð‘–ð‘Žð‘› (ð‘¦ð‘– − ð‘¦Ì‚ð‘–)2
, 𑖠= 1,2,3, … , 𑛠(2.22)
c. Penaksir Least Trimmed Square (LTS)
Menurut Rousseeuw dan Leroy (1987) dengan menggunakan regresi robust
adanya pencilan tidak akan mempengaruhi penaksiran parameter. Metode
Least Trimmed Square (LTS) merupakan salah satu metode penaksiran
parameter model regresi yang Robust terhadap kehadiran pencilan. LTS
digunakan untuk mendapatkan parameter dengan meminimalisasi jumlah
kuadrat galatnya dari h pengamatan. Penaksir LTS adalah sebagai berikut:
ð›½Ì‚ = min (∑ ðœ€ð‘–
2
â„Ž
ð‘–=1
)
= min (∑ (ð‘¦ð‘– − ð‘¦Ì‚ð‘–)2â„Ž
ð‘–=1 ) ,
(3ð‘›+ð‘+1)
4
≤ ℎ ≤ 𑛠(2.23)
repository.unisba.ac.id
17
ðœ€ð‘–
2
= kuadrat galat (sisaan kuadrat) yang terurut dari terkecil hingga terbesar.
ðœ€1
2
< ðœ€2
2
< ðœ€3
2
< ⋯ < ðœ€ð‘–
2
2.7 Penaksir Regresi Ridge Robust
Dalam hal ini regresi ridge merupakan metode alternatif dalam menangani
masalah multikolieritas, tetapi jika terdapat pencilan dan pengamatan yang
berpengaruh besar, maka regresi ridge yang biasa tidak dapat digunakan.
Dikarenakan metode regresi ridge dan robust tidak dapat menangani masalah
pencilan dan multikolinierits secara bersamaan. Analisis regresi ridge robust telah
menarik perhatian beberapa peneliti dalam literatur. Holland (1973) memberikan
rumus untuk dari metode regresi ridge ketika beban yang terkait dengan masing-
masing pengamatan, dan mengusulkan kombinasi regresi ridge dengan metode
regresi yang robust.
Ada penelitian tentang penaksiran dengan menggunakan penaksir regresi ridge
robust seperti pada literatur Vinod dan Ullah (1990), Pfaffenberger dan Dielman
(1981) yang memperkenalkan penaksir Ridge Least Absolut (RRLAV). Dimana
penaksir RRLAV dapat meminimalkan jumlah nilai absolut dari galat terhadap
vektor koefisien β.
a. Regresi Ridge Robust Least Absolute Value (RRLAV)
Pfaffenberger dan Dielman (1984) dan Lawrence dan Arthur (1990)
menyarankan regresi ridge robust dengan cara menggabungkan sifat-sifat Least
Absolute Value (LAV) dan penaksir regresi ridge itu disebut sebagai LAV.
Penaksir regresi RRLAV bagi β adalah:
ð›½Ì‚ ð‘…ð¿ð´ð‘‰ = (ð‘‹ ð‘¡
ð‘‹ + 𜆠ð¿ð´ð‘‰
∗
ð¼)−1
ð‘‹ ð‘¡
𑌠(2.24)
repository.unisba.ac.id
18
Nilai 𜆠ð¿ð´ð‘‰* ditentukan mirip dengan Hoerl et. al. (1975) dalam Persamaan
(2.13) dengan mengganti 𜆠ð¿ð‘† dengan 𜆠ð¿ð´ð‘‰* seperti dalam Persamaan (2.25).
𜆠ð¿ð´ð‘‰
∗
=
ð‘ð‘  ð¿ð´ð‘‰
2
ð›½Ì‚
ð¿ð‘Žð‘£
𑇠ð›½Ì‚ ð¿ð‘Žð‘£
(2.25)
Dimana ð‘  ð¿ð´ð‘‰
2
=
(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð´ð‘‰)
ð‘‡
(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð´ð‘‰)
ð‘›âˆ’ð‘ƒ
(2.26)
P adalah jumlah parameter dan n adalah ukuran sampel, dan ð›½Ì‚ ð¿ð´ð‘‰ adalah
penaksir 𛽠dengan menggunakan metode LAV.
b. Regresi Ridge Robust Least Median Square (RRLMS)
Diusulkan LMS robust didasarkan pada konsep statistik robust, dimana LMS
meminimalkan galat sebagai pengganti kuadrat terkecil biasa. Penaksir regresi
RRLMS bagi β adalah:
ð›½Ì‚ ð¿ð‘€ð‘† = (ð‘‹ ð‘¡
ð‘‹ + 𜆠ð¿ð‘€ð‘†
∗
ð¼)−1
ð‘‹ ð‘¡
𑌠(2.27)
Nilai 𜆠ð¿ð‘€ð‘†* ditentukan mirip dengan Hoerl et. al.(1975) dalam Persamaan
(2.13) dengan mengganti 𜆠ð¿ð‘† dengan 𜆠ð¿ð‘€ð‘†* seperti dalam Persamaan (2.28).
𜆠ð¿ð‘€ð‘†
∗
=
ð‘ð‘  ð¿ð‘€ð‘†
2
ð›½Ì‚
ð¿ð‘€ð‘†
𑇠ð›½Ì‚ ð¿ð‘€ð‘†
(2.28)
Dimana ð‘  ð¿ð‘€ð‘†
2
=
(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘€ð‘†)
ð‘‡
(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘€ð‘†)
ð‘›âˆ’ð¾
(2.29)
P adalah jumlah parameter dan n adalah ukuran sampel, dan ð›½Ì‚ ð¿ð‘€ð‘† adalah
penaksir 𛽠dengan menggunakan metode LMS.
c. Regresi Ridge Robust Least Trimmed Square (RRLTS)
Peter Rousseeuw memperkenalkan penaksir regresi robust Least Squares
Trimmed (LTS) adalah metode high breakdown point diperkenalkan oleh
Rousseeuw (1984). Breakdown point adalah ukuran dari proporsi pencemaran
prosedur tersebut bahwa dapat menahan dan masih mempertahankan
kekokohannya. Penaksir regresi RRLTS bagi β adalah:
ð›½Ì‚ ð¿ð‘‡ð‘† = (ð‘‹ ð‘¡
ð‘‹ + 𜆠ð¿ð‘‡ð‘†
∗
ð¼)−1
ð‘‹ ð‘¡
𑌠(2.30)
repository.unisba.ac.id
19
Nilai 𜆠ð¿ð‘‡ð‘†* ditentukan mirip dengan Hoerl et. al.(1975) dalam Persamaan
(2.13) dengan mengganti 𜆠ð¿ð‘† dengan 𜆠ð¿ð‘‡ð‘†* seperti dalam Persamaan (2.31).
𜆠ð¿ð‘‡ð‘†
∗
=
ð‘ð‘  ð¿ð‘‡ð‘†
2
ð›½Ì‚
ð¿ð‘‡ð‘†
𑇠ð›½Ì‚ ð¿ð‘‡ð‘†
(2.31)
Dimana ð‘  ð¿ð‘‡ð‘†
2
=
(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘‡ð‘†)
ð‘‡
(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘‡ð‘†)
ð‘›âˆ’ð‘ƒ
(2.32)
P adalah jumlah parameter dan n adalah ukuran sampel, dan ð›½Ì‚ ð¿ð‘‡ð‘† adalah
penaksir 𛽠dengan menggunakan metode LTS.
2.8 Proksimat Batu Bara
Batubara adalah bahan bakar hidrokarbon padat yang terbentuk dari tumbuhan
dalam lingkungan bebas oksigen yang dipengaruh oleh panas dan tekanan yang
berlangsung lama di alam dengan komposisi yang komplek. Proses pembentukan
batubara dapat melalui proses sedimentasi dan skala waktu geologi. Pada proses
sedimentasi, batubara terbentuk dari material tumbuh-tumbuhan, yang terendapkan
di dalam suatu cekungan pada kondisi tertentu dan mengalami kompaksi serta
transformasi baik secara fisik, kimia dan biokimia. Proses sedimentasi, kompaksi,
transformasi yang dialami oleh material dasar pembentuk sedimen menjadi batuan
sedimen berjalan selama jutaan tahun.
Batubara memiliki beberapa karakteristik yang dapat dikategorikan menjadi
proksimat, ultimat dan petrografi. Analisis proksimat batubara bertujuan untuk
menentukan kadar fixed carbon, volatile matters, moisture, dan abu (ash). Analisis
ultimat dilakukan untuk menentukan kandungan unsur kimia pada batubara seperti :
karbon, hidrogen, oksigen, nitrogen, sulfur. Analisis batubara biasanya didasarkan
pada basis air dried basis (adb). Sedangkan analisis petrografi dilakukan untuk
mengidentifikasi suatu batuan dengan bantun mikroskop polaristor.
repository.unisba.ac.id
20
Dalam skripsi ini analisis batubara yang dipakai adalah analisis proksimat.
Dalam hal ini ada beberapa variabel yang akan dilihat, yaitu:
- Total Moisture adalah banyaknya air yang terkandung dalam batubara sesuai
dengan kondisi diterima, baik yang terikat secara kimiawi maupun akibat
pengaruh kondisi luar seperti iklim.
- Moisture in air-dried Sample atau residual moisture (ASTM) ialah kandungan
air yang tetap berada dalam batubara setelah batubara dikeringkan dengan cara
baku. Dalam kadar air yang hanya dapat dihilangkan bila sampel batubara
kering-udara yang berukuran lebih kecil dari 3 mm (-3 mm) dipanaskan hingga
105°C.
- Ash (Abu) merupakan sisa pembakaran dari mineral-mineral yang tidak hangus
dalam batubara. Apabila proses pembakaran terjadi pada temperatur di atas
titik leleh abu, abu yang terbentuk akan meleleh dan menimbulkan
penyumbatan di dalam reaktor (slagging). Titik leleh abu merupakan suhu
yang menunjukkan perubahan karakteristik abu batubara apabila dipanaskan
pada kondisi standar.
- Volatile matter (VM) ialah banyaknya zat terbang yang hilang atau bahan yang
keluar bila sampel batubara dipanaskan pada suhu dan waktu yang telah
ditentukan (setelah dikoreksi oleh kadar moisture). Suhunya adalah 900oC,
dengan waktu pemanasan tujuh menit tepat.
- Fixed Carbon ialah kadar karbon tetap yang terdapat dalam batubara setelah
volatile matters dipisahkan dari batubara.
- Gross Calorfic Value adalah nilai kalori batubara yang dianalisa atas sampel
sebagaimana diterima di laboratorium dalam keadaan tertentu yang diterima
oleh pembeli.
repository.unisba.ac.id
21
- Hardgrove grindability index (HGI) atau indeks kekerasan hardgrove, yakni
ukuran/tingkat mudah atau sukarnya batubara digerus menjadi tepung batubara
sebagai bahan bakar (khususnya pada PLTU). Indeks ini terdiri dari angka 0 –
100.
- True Specific Gravity (TSG) merupakan perbandingan antara densitas batubara
dengan densitas air pada suhu referensi tertentu (misalnya 60°F atau
90°F).
repository.unisba.ac.id

More Related Content

06bab2 rahmatika 10060110003_skr_2015

  • 1. 6 BAB II Tinjauan Pustaka 2.1 Metode Kuadrat Terkecil (MKT) Analisis regresi adalah analisis statistika yang bertujuan untuk memodelkan hubungan antara variabel bebas dengan variabel tak bebas. Istilah regresi pertama kali dikenalkan oleh Francis Galton melalui artikelnya yang berjudul Regression Towards Mediocrity In Hereditary Stature. Apabila kita dihadapkan pada suatu masalah penaksiran atau peramalan nilai suatu variabel, katakanlah Y, berdasarkan variabel lain, X. Secara umum, variabel tak bebas dapat dihubungkan oleh k buah variabel bebas, X1, X2, …, Xk, maka model yang digunakan adalah: 𑌠= ð›½0 + ð›½1 ð‘‹1 + ð›½2 ð‘‹2 + ⋯ + 𛽠𑘠𑋠𑘠+ 𜀠(2.1) Model di atas yang disebut sebagai model regresi linier berganda karena melibatkan lebih dari satu variabel bebas. Jika dinyatakan dalam bentuk matriks, maka model regresi dapat ditulis sebagai berikut : Y = Xβ + ε, atau [ ð‘Œ1 ð‘Œ2 … ð‘Œð‘˜ ] = [ 1 ð‘‹11 … ð‘‹1𑘠1 ð‘‹21 … ð‘‹2𑘠… … 1 ð‘‹ð‘–1 ð‘‹ð‘–𑘠] [ ð›½0 ð›½1 … 𛽠𑘠] + [ ðœ€1 ðœ€2 … ðœ€ð‘– ] dimana Y adalah vektor berdimensi n dan X adalah matriks berukuran n x p dengan pangkat (rank) sama dengan p=k+1, β adalah vektor koefisien regresi, E (ε) = 0 dan Var (ε) = ðœŽ2 ð¼. Koefisien regresi β dapat ditaksir menggunakan MKT dengan rumus, ð›½Ì‚ = (ð‘‹ ð‘¡ ð‘‹)−1 (ð‘‹ ð‘¡ ð‘Œ) MKT merupakan metode penaksiran parameter yang meminimalkan jumlah kuadrat sisaan (galat). Metode ini merupakan kelas penaksir yang memiliki sifat repository.unisba.ac.id
  • 2. 7 BLUE. Menurut teorema Gauss-Markov, setiap penaksir MKT yang asumsinya terpenuhi akan bersifat BLUE (Best Linear Unbiased Estimator). Dalam melakukan penaksiran interval dan pengujian parameter regresi, ada asumsi-asumsi yang harus dipenuhi. Asumsi regresi dengan menggunakan MKT adalah : 1. Galat berdistribusi normal dengan rata-rata nol, ðœ€ð‘– ~N(0,ðœŽðœ€ 2 ). 2. Galat mempunyai varians konstan untuk semua observasi, Var(ðœ€ð‘–) = ðœŽ2 . Asumsi ini menyatakan bahwa varians ðœ€ð‘– adalah suatu angka konstan positif yang sama dengan ðœŽ2 . Asumsi ini dikenal dengan asumsi homoskedastisitas, atau varians yang sama. Ini berarti bahwa untuk setiap Y yang berhubungan dengan berbagai nilai X mempunyai varians yang sama. 3. Galat pada suatu observasi saling bebas atau tidak berkorelasi, Cov(ðœ€ð‘–, ðœ€ð‘—) = 0, untuk i≠j. Asumsi ini menyatakan bahwa galat ke-i dan ke-j tidak berkorelasi. Asumsi ini dikenal dengan asumsi tidak adanya autokorelasi. 4. Tidak ada hubungan linier (multikolinieritas) diantara variabel- variabel bebas. Model regresi dikatakan terkena multikolinieritas bila terjadi hubungan linier yang sempurna dan pasti, diantara beberapa atau semua variabel bebas dari model regresi. 2.2 Pemeriksaan Asumsi Normalitas dan Multikolinieitas Berikut merupakan beberapa cara untuk mendeteksi pelanggaran asumsi MKT yang dapat dilakukan dengan cara sebagai berikut; a. Normalitas Uji normalitas dimaksudkan untuk mengetahui apakah galat berdistribusi normal atau tidak berdistribusi normal, E(ðœ€ð‘–) ~ 0. Pengujian normalitas dapat repository.unisba.ac.id
  • 3. 8 dilakukan menggunakan uji Kolmogorov-Smirnov. Ketentuan dalam pengujian normalitas Kolmogorov-Smirnov yaitu apabila nilai p-value yang dihasilkan melalui Kolmogorov-Smirnov adalah lebih besar dari α yang telah ditentukan yaitu sebesar 0,05 maka galat berdistribusi normal. Tetapi sebaliknya bila nilai p-value lebih kecil dari α yang telah ditentukan, maka galat tidak berdistribusi normal. b. Multikolinieritas Analisis multikolinieritas bertujuan untuk melihat apakah dalam model regresi ditemukan adanya kekolinieran antar variabel bebas. Model regresi yang baik seharusnya tidak ada multikolinieritas di antara variabel bebas. 2.3 Multikolinieritas Istilah multikolinieritasitas pertama kali ditemukan oleh Ragnar Frisch pada tahun 1934 yang berarti adanya hubungan linier diantara beberapa atau semua variabel bebas dalam model regresi. Masalah multikolinieritas hanya akan muncul pada model regresi linier berganda. Model yang baik adalah model yang bebas multikolinieritas. Suatu model yang bebas multikolinieritas adalah model yang memiliki nilai Faktor Variance Inflation Factors (VIF) > 10 mengindikasikan terdapatnya multikolinieritas (Myers, 1990). Jika terdapat masalah multikolinieritas diantara variabel bebas, akibatnya akan berbahaya, karena akan menghasilkan penaksir yang tidak stabil dan mungkin jauh dari nilai sasaran (Gunst and Mason, 1980). Salah satu cara untuk mendeteksi adanya masalah multikolinieritas yaitu menggunakan Variance Inflation Factors (VIF). Karena multikolinieritas disebabkan adanya satu atau lebih variabel bebas yang berhubungan linier sempurna atau repository.unisba.ac.id
  • 4. 9 mendekati sempurna dengan variabel bebas lainnya, salah satu cara untuk mengetahuinya adalah dengan meregresikan setiap variabel bebas terhadap variabel bebas lainnya. Misalkan 𑅠𑘠2 adalah koefisien determinasi yang diperoleh dari regresi 𑋠𑘠sebagai variabel bebas terhadap variabel bebas X yang lainnya. Rumus VIF adalah ð‘‰ð¼ð¹ð‘˜ = 1 1−𑅠𑘠2 (2.2) Nilai VIF yang lebih besar dari 10 dapat dijadikan indikasi bahwa ada masalah multikolinieritas diantara variabel bebas (Neter, et. al., 1990, Myers, 1998). 2.4 Pemeriksaan Data Berpengaruh Istilah pencilan (outliers) merujuk pada suatu pengamatan yang dalam beberapa hal tidak konsisten dengan observasi lainnya yang ada dalam suatu data. Suatu pengamatan dapat dikatakan sebagai data pencilan dikarenakan oleh variabel tak bebas atau satu atau lebih variabel bebas mempunyai nilai yang jauh lebih besar atau jauh lebih kecil dari nilai-nilai lainnya. Sedangkan istilah pencilan dalam galat merujuk pada titik data yang galat pengamatannya lebih besar daripada apa yang diharapkan dari keragaman acak itu sendiri. Kemudian, istilah data yang berpotensi sebagai data berpengaruh digunakan pada suatu pengamatan yang merupakan data pencilan dalam satu atau lebih variabel bebas. Dengan demikian penggunaan istilah menjadi jelas apakah data pencilan itu merujuk pada nilai dari variabel tak bebas atau galat. Pendeteksian pencilan dapat dilakukan dengan melihat leverage value dan nilai TRES. Metode kuadrat terkecil biasa mempunyai asumi-asumsi yang beberapa diantaranya sering tidak dapat dipenuhi. Salah satu asumsi tersebut adalah mengenai kenormalan yang sering dilanggar ketika adanya pengamatan yang bersifat pencilan. repository.unisba.ac.id
  • 5. 10 Akibat dari adanya pencilan, galat ðœ€ð‘– tidak lagi berdistribusi normal. Dengan kondisi demikian, pengujian signifikansi parameter regresi selang kepercayaan akan menjadi tidak valid (Rousseeuw, 1984). Metode yang digunakan dalam mengidentifikasi pencilan terhadap variabel X adalah nilai pengaruh (leverage value). Nilai pengaruh (â„Žð‘–ð‘–) dari pengamatan (ð‘‹ð‘–, ð‘Œ) menunjukkan besarnya peranan𑌠terhadap ð‘ŒÌ‚ dan didefinisikan sebagai, â„Žð‘–ð‘– = ð‘¥ð‘– ð‘¡ (ð‘‹ ð‘¡ ð‘‹)−1 ð‘¥ð‘– (2.3) Dengan i = 1,2, . . . , n, ð’™ð’Š ð‘» = [ð‘‹ð‘–1 ð‘‹ð‘–2 … ð‘‹ð‘–ð‘˜] adalah vektor baris yang berisi nilai – nilai dari k variabel bebas pada pengamatan ke-i. Nilai â„Žð‘–ð‘– berada diantara 0 dan 1, yaitu 0 ≤ â„Žð‘–𑖠≤ 1. Jika â„Žð‘–ð‘– lebih besar dari 2ð‘ ð‘› , dengan ð‘ = 𑘠+ 1 maka pengamatan ke-i dikatakan pencilan terhadap X. Menurut Draper dan Smith (1998) metode yang digunakan dalam mengidentifikasi pencilan terhadap variabel Y adalah Studentized Deleted Residual (TRES) yang didefinisikan sebagai: ð‘‡ð‘…ð¸ð‘†ð‘– = ðœ€ð‘– [ 𑛠− 𑘠ð½ð¾ð‘†(1−ℎ ð‘–ð‘–)−𜀠𑖠2] 1 2 ; ð‘– = 1, 2, … , ð‘› (2.4) Dimana, ðœ€ð‘– = ð‘Œð‘– − ð‘ŒÌ‚ð‘– ð‘› = banyaknya pengamatan k = banyaknya variabel bebas JKS = Jumlah Kuadrat Sisa. Hipotesis untuk menguji adanya pencilan: ð»0 ∶ Pengamatan ke – i bukan pencilan ð»1 ∶ Pengamatan ke – i merupakan pencilan repository.unisba.ac.id
  • 6. 11 TRES adalah statistik uji untuk mengetahui pencilan terhadap Y. Kriteria uji yang melandasi keputusan adalah tolak ð»0 jika nilai |ð‘‡ð‘…ð¸ð‘†ð‘–| ≤ ð‘¡( 𛼠2 ,ð‘›âˆ’ð‘˜âˆ’1) , dan terima ð»0 jika nilai |ð‘‡ð‘…ð¸ð‘†ð‘–| > ð‘¡( 𛼠2 ,ð‘›âˆ’ð‘˜âˆ’1). Dimana 𑡠𛼠2 adalah distribusi t-student. Secara umum pencilan tidak selalu merupakan pengamatan berpengaruh ataupun sebaliknya. Kutner et. al, (2004) menjelaskan bahwa pencilan berpengaruh merupakan pencilan sekaligus pengamatan berpengaruh. Pendeteksian pengamatan berpengaruh dapat ditentukan diantaranya melalui nilai DFFITS, DFBETAS, Cook’s Distance dan Covratio. DFFITS digunakan untuk mengetahui pengaruh suatu pengamatan ke-i terhadap model regresi yang ditinjau dari nilai taksirannya. Besarnya nilai DFFITS adalah: DFFITSi = (ð‘…ð‘†ð‘¡ð‘¢ð‘‘ð‘’ð‘›ð‘¡)ð‘–√ â„Ž ð‘–ð‘– 1−ℎ ð‘–ð‘– (2.5) Dalam rumus di atas R-Student merupakan ukuran pencilan (dalam variabel y atau variabel tak bebas) dan â„Žð‘–ð‘– yang merupakan indikator pencilan dalam variabel X atau variabel bebas. Suatu pengamatan ke-i dikatakan berpengaruh apabila pengamatan tersebut memiliki nilai |DFFITSi| > 2/√ ð‘› (Hajarisman, 2010). DFBETAS digunakan untuk menyatakan pengaruh suatu pengamatan ke-i terhadap koefisien ke-k. Besarnya nilai DFBETAS adalah: DFBETASk,i = ð‘ ð‘˜âˆ’ð‘ ð‘˜,−𑖠ð‘ ð‘–√ ð‘ ð‘˜ð‘˜ (2.6) dimana ð‘ ð‘˜ð‘˜ adalah unsur diagonal ke-k matrik (ð‘‹ ð‘¡ ð‘‹)−1 Karena ð‘ ð‘˜,−𑖠adalah koefisien regresi variabel bebas ke-k yang diperoleh tanpa mengikutsertakan pengamatan ke-i, maka DFBETASk,i dapat diartikan sebagai besarnya perubahan yang terjadi terhadap koefisien regresi ð‘ 𑘠jika pengamatan ke-i tidak diikutsertakan dalam pendugaan model regresi. Suatu pengamatan ke-i dikatakan berpengaruh repository.unisba.ac.id
  • 7. 12 terhadap koefisien ke-k apabila pengamatan tersebut memiliki nilai |DFBETASk,i| > 2√ð‘ ð‘›â„ (Hajarisman, 2010). 2.5 Penaksir Regresi Ridge Salah satu masalah utama dalam metode penaksir regresi adalah multikolinieritasitas. Multikolinieritas adalah istilah yang digunakan untuk menggambarkan kasus dimana variabel bebas terdapat suatu pola korelasi. Terdapat beberapa teknik atau metode untuk mengatasi masalah multikolinieritas. Model regresi ridge telah dianjurkan dalam literatur sebagai alternatif penaksir MKT untuk masalah multikolinieritasitas (Hoerl & Kennard, 1970). Pendekatan umum termasuk mengumpulkan data tambahan, modifikasi model, dan penggunaan metode penaksiran. Metode penaksiran yang biasa digunakan untuk menangani masalah multikolinieritasitas diantaranya adalah metode regresi ridge. Metode regresi ridge dikembangkan oleh Hoerl dan Kennard dengan cara menambahkan konstanta yang bernilai positif 𜆠terhadap elemen diagonal ð‘‹ ð‘¡ ð‘‹. Meskipun metode ini menghasilkan penaksir koefisien regresi yang bias, tetapi penaksir ini bisa mendekati nilai parameter yang sebenarnya. Hal ini dapat diketahui dari perbandingan mean square error (MSE) antara penaksir Ridge dengan penaksir MKT. Jika MSE penaksir ridge lebih kecil daripada MSE MKT, maka akan diperoleh penaksir yang mendekati nilai parameter yang sebenarnya. Menurut Kutner, et. al. (2005), penaksiran parameter regresi ridge dilakukan dengan cara menstandarisasi variabel bebas dan variabel tak bebas dengan model: ð‘¦ð‘– ∗ = ð›½1 ∗ ð‘¥ð‘–1 ∗ + ð›½2 ∗ ð‘¥ð‘–2 ∗ + ⋯ + 𛽠𑘠∗ ð‘¥ð‘–𑘠∗ + 𜀠(2.7) dimana, ð‘¦ð‘– ∗ = 𑦠𑖠𑆠𑦠= 𑌠ð‘–−ð‘ŒÌ… 𑆠𑦠(2.8) repository.unisba.ac.id
  • 8. 13 𑥠𑘠∗ = 𑥠𑘠𑆠𑥠𑘠= ð‘‹ ð‘˜âˆ’ð‘‹Ì… 𑘠𑆠𑥠𑘠(2.9) Keterangan: ð‘¦ð‘– ∗ : nilai variabel bebas pengamatan ke- i hasil transformasi ð‘Œð‘– : nilai variabel tak bebas pengamatan ke-i ð‘ŒÌ… : rata-rata variabel tak bebas ð‘› : Jumlah Observasi 𑆠𑦠: √∑ (ð‘Œð‘˜ − ð‘ŒÌ…)2ð‘› ð‘–=1 /(n − 1) (2.10) ð‘¥ð‘–𑘠∗ : nilai variabel bebas ke- k pengamatan ke- i hasil transformasi ð‘‹Ì… 𑘠: rata-rata variabel bebas ke- k 𑆠𑥠𑘠: √∑ (ð‘‹ð‘–𑘠− ð‘‹Ì… ð‘˜)2ð¾ ð‘˜=1 /(n − 1) (2.11) Penaksir regresi ridge bagi ð›½Ì‚ untuk MKT adalah: ð›½Ì‚ ð‘… = (ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + 𜆠ð¿ð‘† ð¼)−1 ð‘‹âˆ—ð‘¡ ð‘Œâˆ— (2.12) Dimana, ð‘Œâˆ— = ( ð‘¦1 ∗ ð‘¦2 ∗ â‹® 𑦠𑘠∗ ) ð‘‹âˆ— = ( ð‘¥11 ∗ ð‘¥12 ∗ ⋯ ð‘¥1𑘠∗ ð‘¥21 ∗ ð‘¥22 ∗ ⋯ ð‘¥2𑘠∗ â‹® ð‘¥ð‘–1 ∗ â‹® ð‘¥ð‘–2 ∗ ⋱ â‹® ⋯ ð‘¥ð‘–𑘠∗ ) 𜷠𑹠= ( ð›½1 ∗ ð›½2 ∗ â‹® 𛽠𑘠∗ ) Dimana I adalah matriks identitas berukuran (k x k) dan 𜆠adalah sebuah bilangan yang positif atau 𜆠≥ 0 , umumnya 𜆠terletak antara interval 0 < 𜆠< 1. Dalam prakteknya, nilai optimal 𜆠tidak diketahui. Oleh karena itu berbagai metode dalam menentukan 𜆠telah muncul dalam literatur seperti yang dijelaskan Hoerl and Kennard (1970) dan Gibbons (1981). repository.unisba.ac.id
  • 9. 14 Dalam persamaan (2.12) salah satu penaksir 𜆠diusulkan oleh Hoerl et. al. (1975) seperti berikut ini, 𜆠ð¿ð‘† = ð‘ð‘  ð¿ð‘† 2 ð›½Ì‚ ð¿ð‘† 𑇠ð›½Ì‚ ð¿ð‘† (2.13) Dimana ð‘  ð¿ð‘† 2 = (ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘†) ð‘‡(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘†) ð‘›âˆ’𑃠(2.14) Saat 𜆠= 0, ð›½Ì‚ ð‘… = ð›½Ì‚ ð¿ð‘†, jika 𜆠> 0, ð›½Ì‚ ð‘… bias tetapi lebih stabil dan tepat daripada penaksir MKT dan ketika 𜆠→ ~, ð›½Ì‚ 𑅠→ 0. Dari persamaan (2.7) dapat dibentuk menjadi: ð‘Œð‘–−ð‘ŒÌ… 𑖠𑆠𑦠= ð›½1 ∗ ( ð‘‹1ð‘˜âˆ’ð‘‹Ì…1 ð‘†1 ) + ð›½2 ∗ ( ð‘‹2ð‘˜âˆ’ð‘‹Ì…2 ð‘†2 ) + ⋯ + 𛽠𑘠∗ ( ð‘‹ð‘–ð‘˜âˆ’ð‘‹Ì… 𑘠𑆠𑘠) (2.15) ð‘Œð‘– − ð‘ŒÌ… = ð›½1 ∗ 𑆠𑦠𑆠ð‘¥1 (ð‘‹1 − ð‘‹Ì…1) + ð›½2 ∗ 𑆠𑦠𑆠ð‘¥2 (ð‘‹2 − ð‘‹Ì…2) + ⋯ + 𛽠𑘠∗ 𑆠𑦠𑆠𑥠𑘠(ð‘‹ð‘– − ð‘‹Ì… ð‘˜) ð‘Œð‘– = ð‘ŒÌ… − (ð›½1 ∗ 𑆠𑦠𑆠ð‘¥1 ð‘‹Ì…1 + ð›½2 ∗ 𑆠𑦠𑆠ð‘¥2 ð‘‹Ì…2 + ⋯ + 𛽠𑘠∗ 𑆠𑦠𑆠𑥠𑘠ð‘‹Ì… ð‘˜) +ð›½1 ∗ 𑆠𑦠𑆠ð‘¥1 ð‘‹1 + ð›½2 ∗ 𑆠𑦠𑆠ð‘¥2 ð‘‹2 + ⋯ + 𛽠𑘠∗ 𑆠𑦠𑆠𑘠(𑋠𑘠− ð‘‹Ì… ð‘˜)𑋠𑘠(2.16) Dari model di atas maka dapat diubah menjadi, ð›½Ì‚0 = ð‘ŒÌ… − ð›½Ì‚1 ð‘‹Ì…1 + ð›½Ì‚2 ð‘‹Ì…2 + ⋯ + ð›½Ì‚ 𑘠ð‘‹Ì… 𑘠ð›½Ì‚0 = ð‘ŒÌ… − ∑ 𛽠𑘠ð‘‹Ì… 𑘠ð¾ ð‘˜=1 (2.17) ð›½Ì‚ 𑘠= ( 𑆠𑦠𑆠𑥠𑘠) 𛽠𑘠∗ ; k = 1,2,....K (2.18) Persamaan (2.17) dan (2.18) merupakan rumus untuk mengembalikan model regresi ridge ke model asalnya. Setelah nilai ð›½Ì‚ didapatkan, maka model regresi berganda yang siap digunakan untuk penaksir (Neter hal. 414). ð‘ŒÌ‚ð‘– = ð›½Ì‚0 + ð›½Ì‚1 ð‘‹1 + ð›½Ì‚2 ð‘‹2 + ⋯ + ð›½Ì‚ 𑘠𑋠𑘠(2.19) Sifat bias dari penaksir ð›½Ì‚ ð‘…: ð¸(ð›½Ì‚ ð‘…) = ð¸((ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 ð‘‹âˆ—ð‘¡ ð‘Œâˆ—) dengan ð‘Œâˆ— = ð‘‹âˆ— ð›½Ì‚ = ð¸((ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 ð‘‹âˆ—ð‘¡ ð‘‹âˆ— ð›½Ì‚) repository.unisba.ac.id
  • 10. 15 = ð¸((ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1[(ð‘‹âˆ—ð‘¡ ð‘‹âˆ—) + ðœ†ð¼ − ðœ†ð¼]ð›½Ì‚) = ð¸((ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 ð‘‹âˆ—ð‘¡ ð‘‹âˆ— ð›½Ì‚ + ðœ†(ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 ð›½Ì‚ − ðœ†(ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 ð›½Ì‚) = ð¸((ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 (ð‘‹âˆ—ð‘¡ ð‘‹âˆ— ð›½Ì‚ + ðœ†ð¼ð›½Ì‚) − ðœ†(ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 ð›½Ì‚) = ð¸((ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1(ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)ð›½Ì‚ − ðœ†(ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 ð›½Ì‚) = ð¸(ð›½Ì‚ − ðœ†(ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 ð›½Ì‚) = 𛽠− ðœ†(ð‘‹âˆ—ð‘¡ ð‘‹âˆ— + ðœ†ð¼)−1 𛽠(2.20) 2.6 Penaksir Regresi Robust Sebuah pengamatan yang berbeda dari sekumpulan data lainnya atau dikatakan pencilan, dapat berpengaruh besar pada analisis regresi. Pencilan dapat menyebabkan hal–hal berikut: 1. Galat yang besar dari model yang terbentuk atau E[ðœ€] ≠ 0, 2. Varians pada data tersebut menjadi lebih besar, 3. Taksiran interval akan memiliki rentang yang lebar. Regresi robust diperkenalkan oleh Andrews (1978) sebagai model regresi yang digunakan apabila distribusi dari galat tidak normal atau adanya beberapa pencilan yang berpengaruh pada model. Metode ini merupakan alat penting untuk menganalisis data yang dipengaruhi oleh pencilan sehingga dihasilkan model yang robust terhadap pencilan (Draper and Smith, 1998). Dalam regresi robust terdapat beberapa metode penaksiran parameter seperti penaksir Least Absolute Value (LAV), penaksir Least Median Square (LMS), dan penaksir Least Trimmed Square (LTS) (Chen, 2002). a. Penaksir Least Absolute Value (LAV) Least Absolute Value dikenal dengan berbagai nama, yaitu Minimum Absolute Deviation regression, regresi Least Absolute Deviation (LAD), dan regresi repository.unisba.ac.id
  • 11. 16 Minimum Sum of Absolute Errors. Dielman (1984) menyatakan bahwa penaksir LAV untuk mendapatkan penaksir β adalah meminimalkan jumlah nilai mutlak dari galat (ðœ€ð‘–) yaitu: ð›½Ì‚ = min ∑ |ðœ€ð‘–|ð‘› ð‘–=1 = min ∑ |ð‘¦ð‘– − 𑥠𑘠𑡠ð›½|ð‘› ð‘–=1 (2.21) dengan k = 1, 2, ..., K dan k adalah banyak variabel bebas. Jika k ≥ 2 maka untuk mendapatkan 𛽠adalah dengan menggunakan metode regresi LAV berganda. LAV kuat untuk sebuah pencilan dalam y. Tetapi, LAV tidak dapat melindungi terhadap pencilan x (leverage). b. Penaksir Least Median Square (LMS) Metode Least Median Square (LMS) merupakan salah satu jenis regresi robust dengan high breakdown point. Menurut Venables dan Ripley (1999), Algoritma ini meminimumkan median kuadrat galat dari i pengamatan untuk mendapatkan koefisien regresi β , yaitu: ð›½Ì‚ = min ð‘šð‘’ð‘‘ð‘–ð‘Žð‘› (ðœ€ð‘– 2 ) = min ð‘šð‘’ð‘‘ð‘–ð‘Žð‘› (ð‘¦ð‘– − ð‘¦Ì‚ð‘–)2 , ð‘– = 1,2,3, … , ð‘› (2.22) c. Penaksir Least Trimmed Square (LTS) Menurut Rousseeuw dan Leroy (1987) dengan menggunakan regresi robust adanya pencilan tidak akan mempengaruhi penaksiran parameter. Metode Least Trimmed Square (LTS) merupakan salah satu metode penaksiran parameter model regresi yang Robust terhadap kehadiran pencilan. LTS digunakan untuk mendapatkan parameter dengan meminimalisasi jumlah kuadrat galatnya dari h pengamatan. Penaksir LTS adalah sebagai berikut: ð›½Ì‚ = min (∑ ðœ€ð‘– 2 â„Ž ð‘–=1 ) = min (∑ (ð‘¦ð‘– − ð‘¦Ì‚ð‘–)2â„Ž ð‘–=1 ) , (3ð‘›+ð‘+1) 4 ≤ â„Ž ≤ ð‘› (2.23) repository.unisba.ac.id
  • 12. 17 ðœ€ð‘– 2 = kuadrat galat (sisaan kuadrat) yang terurut dari terkecil hingga terbesar. ðœ€1 2 < ðœ€2 2 < ðœ€3 2 < ⋯ < ðœ€ð‘– 2 2.7 Penaksir Regresi Ridge Robust Dalam hal ini regresi ridge merupakan metode alternatif dalam menangani masalah multikolieritas, tetapi jika terdapat pencilan dan pengamatan yang berpengaruh besar, maka regresi ridge yang biasa tidak dapat digunakan. Dikarenakan metode regresi ridge dan robust tidak dapat menangani masalah pencilan dan multikolinierits secara bersamaan. Analisis regresi ridge robust telah menarik perhatian beberapa peneliti dalam literatur. Holland (1973) memberikan rumus untuk dari metode regresi ridge ketika beban yang terkait dengan masing- masing pengamatan, dan mengusulkan kombinasi regresi ridge dengan metode regresi yang robust. Ada penelitian tentang penaksiran dengan menggunakan penaksir regresi ridge robust seperti pada literatur Vinod dan Ullah (1990), Pfaffenberger dan Dielman (1981) yang memperkenalkan penaksir Ridge Least Absolut (RRLAV). Dimana penaksir RRLAV dapat meminimalkan jumlah nilai absolut dari galat terhadap vektor koefisien β. a. Regresi Ridge Robust Least Absolute Value (RRLAV) Pfaffenberger dan Dielman (1984) dan Lawrence dan Arthur (1990) menyarankan regresi ridge robust dengan cara menggabungkan sifat-sifat Least Absolute Value (LAV) dan penaksir regresi ridge itu disebut sebagai LAV. Penaksir regresi RRLAV bagi β adalah: ð›½Ì‚ ð‘…ð¿ð´ð‘‰ = (ð‘‹ ð‘¡ ð‘‹ + 𜆠ð¿ð´ð‘‰ ∗ ð¼)−1 𑋠𑡠𑌠(2.24) repository.unisba.ac.id
  • 13. 18 Nilai 𜆠ð¿ð´ð‘‰* ditentukan mirip dengan Hoerl et. al. (1975) dalam Persamaan (2.13) dengan mengganti 𜆠ð¿ð‘† dengan 𜆠ð¿ð´ð‘‰* seperti dalam Persamaan (2.25). 𜆠ð¿ð´ð‘‰ ∗ = ð‘ð‘  ð¿ð´ð‘‰ 2 ð›½Ì‚ ð¿ð‘Žð‘£ 𑇠ð›½Ì‚ ð¿ð‘Žð‘£ (2.25) Dimana ð‘  ð¿ð´ð‘‰ 2 = (ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð´ð‘‰) 𑇠(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð´ð‘‰) ð‘›âˆ’𑃠(2.26) P adalah jumlah parameter dan n adalah ukuran sampel, dan ð›½Ì‚ ð¿ð´ð‘‰ adalah penaksir 𛽠dengan menggunakan metode LAV. b. Regresi Ridge Robust Least Median Square (RRLMS) Diusulkan LMS robust didasarkan pada konsep statistik robust, dimana LMS meminimalkan galat sebagai pengganti kuadrat terkecil biasa. Penaksir regresi RRLMS bagi β adalah: ð›½Ì‚ ð¿ð‘€ð‘† = (ð‘‹ ð‘¡ ð‘‹ + 𜆠ð¿ð‘€ð‘† ∗ ð¼)−1 𑋠𑡠𑌠(2.27) Nilai 𜆠ð¿ð‘€ð‘†* ditentukan mirip dengan Hoerl et. al.(1975) dalam Persamaan (2.13) dengan mengganti 𜆠ð¿ð‘† dengan 𜆠ð¿ð‘€ð‘†* seperti dalam Persamaan (2.28). 𜆠ð¿ð‘€ð‘† ∗ = ð‘ð‘  ð¿ð‘€ð‘† 2 ð›½Ì‚ ð¿ð‘€ð‘† 𑇠ð›½Ì‚ ð¿ð‘€ð‘† (2.28) Dimana ð‘  ð¿ð‘€ð‘† 2 = (ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘€ð‘†) 𑇠(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘€ð‘†) ð‘›âˆ’ð¾ (2.29) P adalah jumlah parameter dan n adalah ukuran sampel, dan ð›½Ì‚ ð¿ð‘€ð‘† adalah penaksir 𛽠dengan menggunakan metode LMS. c. Regresi Ridge Robust Least Trimmed Square (RRLTS) Peter Rousseeuw memperkenalkan penaksir regresi robust Least Squares Trimmed (LTS) adalah metode high breakdown point diperkenalkan oleh Rousseeuw (1984). Breakdown point adalah ukuran dari proporsi pencemaran prosedur tersebut bahwa dapat menahan dan masih mempertahankan kekokohannya. Penaksir regresi RRLTS bagi β adalah: ð›½Ì‚ ð¿ð‘‡ð‘† = (ð‘‹ ð‘¡ ð‘‹ + 𜆠ð¿ð‘‡ð‘† ∗ ð¼)−1 𑋠𑡠𑌠(2.30) repository.unisba.ac.id
  • 14. 19 Nilai 𜆠ð¿ð‘‡ð‘†* ditentukan mirip dengan Hoerl et. al.(1975) dalam Persamaan (2.13) dengan mengganti 𜆠ð¿ð‘† dengan 𜆠ð¿ð‘‡ð‘†* seperti dalam Persamaan (2.31). 𜆠ð¿ð‘‡ð‘† ∗ = ð‘ð‘  ð¿ð‘‡ð‘† 2 ð›½Ì‚ ð¿ð‘‡ð‘† 𑇠ð›½Ì‚ ð¿ð‘‡ð‘† (2.31) Dimana ð‘  ð¿ð‘‡ð‘† 2 = (ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘‡ð‘†) 𑇠(ð‘Œâˆ’ð‘‹ð›½Ì‚ ð¿ð‘‡ð‘†) ð‘›âˆ’𑃠(2.32) P adalah jumlah parameter dan n adalah ukuran sampel, dan ð›½Ì‚ ð¿ð‘‡ð‘† adalah penaksir 𛽠dengan menggunakan metode LTS. 2.8 Proksimat Batu Bara Batubara adalah bahan bakar hidrokarbon padat yang terbentuk dari tumbuhan dalam lingkungan bebas oksigen yang dipengaruh oleh panas dan tekanan yang berlangsung lama di alam dengan komposisi yang komplek. Proses pembentukan batubara dapat melalui proses sedimentasi dan skala waktu geologi. Pada proses sedimentasi, batubara terbentuk dari material tumbuh-tumbuhan, yang terendapkan di dalam suatu cekungan pada kondisi tertentu dan mengalami kompaksi serta transformasi baik secara fisik, kimia dan biokimia. Proses sedimentasi, kompaksi, transformasi yang dialami oleh material dasar pembentuk sedimen menjadi batuan sedimen berjalan selama jutaan tahun. Batubara memiliki beberapa karakteristik yang dapat dikategorikan menjadi proksimat, ultimat dan petrografi. Analisis proksimat batubara bertujuan untuk menentukan kadar fixed carbon, volatile matters, moisture, dan abu (ash). Analisis ultimat dilakukan untuk menentukan kandungan unsur kimia pada batubara seperti : karbon, hidrogen, oksigen, nitrogen, sulfur. Analisis batubara biasanya didasarkan pada basis air dried basis (adb). Sedangkan analisis petrografi dilakukan untuk mengidentifikasi suatu batuan dengan bantun mikroskop polaristor. repository.unisba.ac.id
  • 15. 20 Dalam skripsi ini analisis batubara yang dipakai adalah analisis proksimat. Dalam hal ini ada beberapa variabel yang akan dilihat, yaitu: - Total Moisture adalah banyaknya air yang terkandung dalam batubara sesuai dengan kondisi diterima, baik yang terikat secara kimiawi maupun akibat pengaruh kondisi luar seperti iklim. - Moisture in air-dried Sample atau residual moisture (ASTM) ialah kandungan air yang tetap berada dalam batubara setelah batubara dikeringkan dengan cara baku. Dalam kadar air yang hanya dapat dihilangkan bila sampel batubara kering-udara yang berukuran lebih kecil dari 3 mm (-3 mm) dipanaskan hingga 105°C. - Ash (Abu) merupakan sisa pembakaran dari mineral-mineral yang tidak hangus dalam batubara. Apabila proses pembakaran terjadi pada temperatur di atas titik leleh abu, abu yang terbentuk akan meleleh dan menimbulkan penyumbatan di dalam reaktor (slagging). Titik leleh abu merupakan suhu yang menunjukkan perubahan karakteristik abu batubara apabila dipanaskan pada kondisi standar. - Volatile matter (VM) ialah banyaknya zat terbang yang hilang atau bahan yang keluar bila sampel batubara dipanaskan pada suhu dan waktu yang telah ditentukan (setelah dikoreksi oleh kadar moisture). Suhunya adalah 900oC, dengan waktu pemanasan tujuh menit tepat. - Fixed Carbon ialah kadar karbon tetap yang terdapat dalam batubara setelah volatile matters dipisahkan dari batubara. - Gross Calorfic Value adalah nilai kalori batubara yang dianalisa atas sampel sebagaimana diterima di laboratorium dalam keadaan tertentu yang diterima oleh pembeli. repository.unisba.ac.id
  • 16. 21 - Hardgrove grindability index (HGI) atau indeks kekerasan hardgrove, yakni ukuran/tingkat mudah atau sukarnya batubara digerus menjadi tepung batubara sebagai bahan bakar (khususnya pada PLTU). Indeks ini terdiri dari angka 0 – 100. - True Specific Gravity (TSG) merupakan perbandingan antara densitas batubara dengan densitas air pada suhu referensi tertentu (misalnya 60°F atau 90°F). repository.unisba.ac.id