ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
???? J ????? ??? ?? ????? @ ??????,
?????? ??? ??
¨C ???/???? ?? ??
??? @ ??????
??? ??/???
daehee@slowcampus.com
http://medium.com/@slowcampus
http://slowcampus.com
Just Start up your Deep Learning for your Future !
???? J ????? ??? ?? ????? @ ??????,
??????
SLOW? SW(?????) ???
2
???? ??? ??? ?????
???? http://slowcampus.com
??? http://medium.com/@slowcampus
???? J ????? ??? ?? ????? @ ??????,
??? ??: ??? Tensorflow & Keras 1? ??
? ??? ??? ??
? ??? ?? ??
? ??? ?? ??
3
???
???
???
???? J ????? ??? ?? ????? @ ??????,
????? ??? ???, ?? ???? ??Goal ?? !!
4
??? ??/?? ??
???? ?????
????
????
???
??
????
????
??
??????
???? ?? (???)
???
DB,
????
Goal:
????
?? ???
???? J ????? ??? ?? ????? @ ??????,
???? ??
? ?1? ?????? ¨¤ ???? ??? ?? ?? ?? (1980?~2010?)
? ?2? ?????? ¨¤ ?????/??? ?? ????? ????? ?? (2010?~2040?)
??? ??(HW)? ????, ????? ??? ?????,
??? SW??? ??/???? ?? ?.
? ?? ???? ?? ??? ????.
?????? ??, ?????? ??? ?????? ??? ????? ?? ???.
?? ??? ?? ???? ?? ?? ???? ??? ??? ??? ??.
5
Data
Information
Knowledge
???? J ????? ??? ?? ????? @ ??????,
???/???? ?? ?? ????
? ??? ???
???? ? ?? ??
ML
Researcher
? ??? ???? ????
???? ?? ??? ??
ML Engineer
? ?????/???
??? ??/??
Data Engineer
6
???? J ????? ??? ?? ????? @ ??????,
?????
?? ÅДà Judgement, Decision
7
1 .??? ???? ??? ?? ?? ?? ??? ??.
2 .?? ??? ??? ?? ???? ???? ??? ?? ??.
???? J ????? ??? ?? ????? @ ??????,
??? ????
????? ??? ??? ???? ??/??? ?????
? ?? (Rule) ??
? ??(Example) ?? ¨C ?? ? ??? ??
8
¨¤ ??? Data Driven Decision ??? ?? ?? ?
???? J ????? ??? ?? ????? @ ??????,
??? ??
??(??? ?? ?)? ??
9
??(??) ?? ?? ?? ?? ??
??? ????? ?
? ??? ???? ?? ? ??? ?
????
Logistic
Yes/No, True/False
Logistic regression
???? ???? ?? ?? ????
(Discrete)
Classification
?? ???? ??,
??? ??,
????? ?? ? ??
???
(Continuous)
Regression,
Prediction,
¡­
???? J ????? ??? ?? ????? @ ??????,
?? ?? - regression
10
??? ?(point, ???)????
Input X? output Y ??? ???(??)? ?? ?
???? J ????? ??? ?? ????? @ ??????,
???? ¨C Classification (??)
Input X? ?? label(output Y, discrete values) ? ??? ?
CAT (1)
DOG (2)
?? X ?? Y
???? J ????? ??? ?? ????? @ ??????,
???? - Classification
Input X? ?? label(output Y) ? ??? ?
0
1
2
...
9
?? X ?? Y
??? ?? (?????)
13
???? J ????? ??? ?? ????? @ ??????,
Fit & Modeling
????
??? ??
5~6 ??? ???
??(???)?? ??
14
???? J ????? ??? ?? ????? @ ??????,
Fit & Modeling
????
?? ??
1?? ?? ???
???? ??
15
???? J ????? ??? ?? ????? @ ??????,
Fit
?? ?? ?? ????
?? ?? ?? ????
16
???? J ????? ??? ?? ????? @ ??????,
? ? ?? ?? ?? ???? ??
? ? ???? ?? ??? ???? ??
17
Fitting
???? J ????? ??? ?? ????? @ ??????,
? ??? ??? ???
18
???? J ????? ??? ?? ????? @ ??????,
Exponential fit: y = aebx
? ???(?)? ?? fit
?? a, b ?? ???
? ????? 2?? ?
??. (a, b)
19
???? J ????? ??? ?? ????? @ ??????,
Power fit: y = axb
20
? ???(?)? ?? fit
?? a, b ?? ???
? ????? 2?? ?
??. (a, b)
?? ?? ? ???? ??
(????? ???? ?? ???)
21
???? J ????? ??? ?? ????? @ ??????,
¨C H.B. BARLOW
¡°Intelligence is the art of
good guesswork¡±
???? J ????? ??? ?? ????? @ ??????,
¨C ? ? ? J
¡°????
?? ???? ???? ??,
??? ???? ???? ?? ?¡±
???? J ????? ??? ?? ????? @ ??????,
??? ¨C fitting ? ??
??
??
??
24
??? ??? ? ??? ?????,
??? ??? ??? ?? ?? ??? ????.
???? J ????? ??? ?? ????? @ ??????,
???
? Input ¨C output ?? ??/??/??/??? ?? ?
???? ??? ????
25
* ???? ???? ????? ??? ???
???? ??? ??? ??. X? ???? feature?
??? ? ?? ??? ????.
????: ?? x? ?? ? ??? y? ???? ??.
???? J ????? ??? ?? ????? @ ??????,
????? ??? ?? ? (??)
26
?? ?
???(X) ???(Y)
Features Class, Label
Pattern Function
Vectors Relation
??/??? ???
(training/test)
Probability Function
???? J ????? ??? ?? ????? @ ??????,
???
?Input ¨C output ????
27
? ?
???? J ????? ??? ?? ????? @ ??????,
??? ¨C ?? ? ??
? Input ¨C output ??? ??
28
0.0 0.0 0.0 ¡­.
0.0 0.0 0.0 ¡­.
0.0 0.0 0.0 ¡­.
0.9 0.8 0.1 ¡­
0.2 0.3 0.5 ¡­
0.2 0.3 0.5 ¡­
¡­
?? ??
???? J ????? ??? ?? ????? @ ??????,
????? (2?1?)
? ???(??)? 2??? ?? 2? ????
? ???? ??? ??? ????(??)? ?? ??
29
???? J ????? ??? ?? ????? @ ??????,
????? (3?1?)
30
? X (x, y, z): ???
? A, B? ?? ????
? A? ??? Weight
? B? ??? Bias
???? J ????? ??? ?? ????? @ ??????,
31
????? (N?1?)
? X (x1, x2, ¡­, xn): ???
? A, B? ?? ????
? A? ??? Weight
? B? ??? Bias
???? J ????? ??? ?? ????? @ ??????,
??? ¨C ?? ?? ??
? ?? output? ??? output? ??(Erorr, Loss, Cost)?
? ????? ????? ? (minimize)
? Iteration == Loop == Epoch
32
0.9 0.8 0.1 ¡­
0.2 0.3 0.5 ¡­
0.2 0.3 0.5 ¡­
¡­
X
Y¡¯Y
??
????
E = Y ¨C Y¡¯
????(W, b) ??
???? J ????? ??? ?? ????? @ ??????,
??? ??
? ??(Loss, Cost)? ????? ?? ?? ?? ????
(weights)? ????? ??? ??? ??? ???.
33
X: ?? ?? ??? Y: ?? ???(???)
Y¡±: ??? ?? ???
??(MSE, cost, loss)??
????
???? J ????? ??? ?? ????? @ ??????,
Training, Validation, Test
? Training ¨C ???
? Validation ¨C ?? ????: ?
? ??? ???? ??
? Testing ¨C ?? ????, ??
??? ??? ?? ??
34
??? ?? ???
???
(Training)
????
(Testing)
??
???
(Validation)
80%, 10%, 10%
???? J ????? ??? ?? ????? @ ??????,
??(training)? ???
35
training(X, Y) pair: Data for Training
Y¡¯ - ??? ???
?????
?????
(weights,
biases)
??
(????
??)
Save
X¡¯: Data for Test test
?????
?????
(weights,
biases)
Load
Threshold
&
Decision
?? ?? ??
36
???? J ????? ??? ?? ????? @ ??????,
??? ??? ??
37
? ??????? ???? ??, ??? ??? ??? ??
???? J ????? ??? ?? ????? @ ??????,
?? ??? ??
38
Supervised Unsupervised
Reinforcement
Learning
???? ??
(X, Y)? ??
???? ??
Guess & Measure
??? ??? ?
? ??? ?? ?
?: ??, ??
???? J ????? ??? ?? ????? @ ??????,
Supervised ?? ??) Lunit
39
???? J ????? ??? ?? ????? @ ??????,
??) ??
40
???? J ????? ??? ?? ????? @ ??????,
Unsupervised??) Dable?? ??, ?? ??
41
???? J ????? ??? ?? ????? @ ??????,
Unsupervised ??) Watcha ?? ??, ?? ??
42
???? vs ?????
43
http://www.kdnuggets.com/2016/05/implement-machine-learning-algorithms-scratch.html
? ???? ¨C
? ????? ¨C ??? ??? ??? ??
??, ?? ???? ????
44
???? J ????? ??? ?? ????? @ ??????,
?????? ??? ????? ??
????? ???. ????? ???
???????? ????? ?????
??/????? ???
???? ?? ? ?? ???? ?
45
????
????
???
??(Method)
??(Goal)
???? J ????? ??? ?? ????? @ ??????,
???? == ??? ??
??????? ??(???)? ????? ??/??/??/?
?/??? ???? ?.
¨¤ Learning from Data
46
Inductive Learning (learning by examples)
automatic discovery of regularities in data through the use
of computer algorithms and generalizing those into new but
similar data
???? J ????? ??? ?? ????? @ ??????,
??????
? ?? ? ???? ?? ????? ??? ?? ??? ???
?????? ???? ??
? ??? ¨C ?, ?? ?? (Collaboration filtering)
? ??? ¨C ???? ?? (Associative Rules)
? ¡­
47
???? J ????? ??? ?? ????? @ ??????,
????
? ????? ??? ? ?? ? (?? ??/??/?? ????)
? ??, ??? ??
? ??, ?? ????
? ???
? ??
? ????
48
???? J ????? ??? ?? ????? @ ??????,
????? ????? ??? ??? ???? ??
??? ??/??
? ???? (??,??,??,???,???)
? ???? ??? (???)
? ?? (????, ????)
? ?? (??)
? IoT ¨C ??? ??? ??
? ????+?????
? ???
??,???
???? J ????? ??? ?? ????? @ ??????,
?? ?? (Pattern Recognition)
? 1990?? ??
? ????? ??? ???? ??? ???? ?? ??
? ¡®??? ??¡¯ ??? ?? ??? ??
? ¡®??? ??? ??/???? ????
? ¡®?? ??¡¯? ???(??? ????)? ???? ? ? ??
50
???? ???
51
???? J ????? ??? ?? ????? @ ??????,
? ???/???? AI???? ??? ?????
???
???????
52
??? ¨C ????
??? ??? ????
????? !
??/??/??/????
?? ??? ??
??? ?? !!
???
???? J ????? ??? ?? ????? @ ??????,
??? ?? ??? ???? ???? ??? !
53
????
??? ????
1.???
2.???3.??
???
??,??,????
Data
Scientist
Data
Engineer
??? ??,
??
????? ???
vs
?? ?? ???
54
???? J ????? ??? ?? ????? @ ??????,
55
???? J ????? ??? ?? ????? @ ??????,
Statistics vs Machine Learning
56https://www.datasciencecentral.com/profiles/blogs/machine-learning-vs-traditional-statistics-different-philosophi-1
https://svds.com/machine-learning-vs-statistics/
¡°Machine learning is for Computer
Science majors who couldn¡¯t pass a
Statistics course.¡±
???? J ????? ??? ?? ????? @ ??????,
Statistics vs Machine Learning
57https://www.datasciencecentral.com/profiles/blogs/machine-learning-vs-traditional-statistics-different-philosophi-1
https://svds.com/machine-learning-vs-statistics/
¡°Machine learning is essentially
a form of applied statistics¡±
???? J ????? ??? ?? ????? @ ??????,
Statistics vs Machine Learning
58https://www.datasciencecentral.com/profiles/blogs/machine-learning-vs-traditional-statistics-different-philosophi-1
https://svds.com/machine-learning-vs-statistics/
¡°Machine learning is Statistics minus any
checking of models and assumptions.¡±
???? vs ??/??
??
? Deterministic
? ??, ?? ?? ??
? ???? ????, ??? ?
? ?? ?? ?? ??
?? ??
? Stochastic (probabilistic + time)
? ????? ?? ?? ??? ??
??? ???
? ???? ?? ?? ?? ??
59
???? J ????? ??? ?? ????? @ ??????,
Machine Learning (ML) Traditional statistics (TS)
Goal: ¡°learning¡± from data of all sorts Goal: Analyzing and summarizing data
No rigid pre-assumptions about the problem a
nd data distributions in general
Tight assumptions about the problem and data distri
butions
More liberal in the techniques and approaches Conservative in techniques and approaches
Generalization is pursued empirically through t
raining, validation and test datasets
Generalization is pursued using statistical tests on the
training dataset
Not shy of using heuristics in approaches in se
arch of a ¡°good solution¡±
Using tight initial assumptions about data and the pr
oblem, typically in search of an optimal solution unde
r those assumptions
Redundancy in features (variables) is okay, and
often helpful. Preferable to use algorithms desi
gned to handle large number of features
Often requires independent features. Preferable to us
e less number of input features
Does not promote data reduction prior to learn
ing. Promotes a culture of abundance: ¡°the mo
re data, the better¡±
Promotes data reduction as much as possible before
modeling (sampling, less inputs, ¡­)
Has faced with solving more complex problems
in learning, reasoning, perception, knowledge
presentation, ¡­
Mainly focused on traditional data analysis
60
?? ?? vs ????
61
???? vs ????
????
? ???? ???? ????? ?
? ????? ??
? ????? ??? ??? ???
? ?? ???? ?. ?? ???.
????
? ????? step-by-step ??
?? ? ?? ??/??/???
?? ????? ???
? ????? ????? ??
62
???? J ????? ??? ?? ????? @ ??????,
???? ?? - sorting
63
???? J ????? ??? ?? ????? @ ??????,
???? ?? - sorting
64
???? J ????? ??? ?? ????? @ ??????,
???? ?? - sorting
65

More Related Content

????????? ?????????????(????) ??#1-??

  • 1. ???? J ????? ??? ?? ????? @ ??????, ?????? ??? ?? ¨C ???/???? ?? ?? ??? @ ?????? ??? ??/??? daehee@slowcampus.com http://medium.com/@slowcampus http://slowcampus.com Just Start up your Deep Learning for your Future !
  • 2. ???? J ????? ??? ?? ????? @ ??????, ?????? SLOW? SW(?????) ??? 2 ???? ??? ??? ????? ???? http://slowcampus.com ??? http://medium.com/@slowcampus
  • 3. ???? J ????? ??? ?? ????? @ ??????, ??? ??: ??? Tensorflow & Keras 1? ?? ? ??? ??? ?? ? ??? ?? ?? ? ??? ?? ?? 3 ??? ??? ???
  • 4. ???? J ????? ??? ?? ????? @ ??????, ????? ??? ???, ?? ???? ??Goal ?? !! 4 ??? ??/?? ?? ???? ????? ???? ???? ??? ?? ???? ???? ?? ?????? ???? ?? (???) ??? DB, ???? Goal: ???? ?? ???
  • 5. ???? J ????? ??? ?? ????? @ ??????, ???? ?? ? ?1? ?????? ¨¤ ???? ??? ?? ?? ?? (1980?~2010?) ? ?2? ?????? ¨¤ ?????/??? ?? ????? ????? ?? (2010?~2040?) ??? ??(HW)? ????, ????? ??? ?????, ??? SW??? ??/???? ?? ?. ? ?? ???? ?? ??? ????. ?????? ??, ?????? ??? ?????? ??? ????? ?? ???. ?? ??? ?? ???? ?? ?? ???? ??? ??? ??? ??. 5 Data Information Knowledge
  • 6. ???? J ????? ??? ?? ????? @ ??????, ???/???? ?? ?? ???? ? ??? ??? ???? ? ?? ?? ML Researcher ? ??? ???? ???? ???? ?? ??? ?? ML Engineer ? ?????/??? ??? ??/?? Data Engineer 6
  • 7. ???? J ????? ??? ?? ????? @ ??????, ????? ?? ÅДà Judgement, Decision 7 1 .??? ???? ??? ?? ?? ?? ??? ??. 2 .?? ??? ??? ?? ???? ???? ??? ?? ??.
  • 8. ???? J ????? ??? ?? ????? @ ??????, ??? ???? ????? ??? ??? ???? ??/??? ????? ? ?? (Rule) ?? ? ??(Example) ?? ¨C ?? ? ??? ?? 8 ¨¤ ??? Data Driven Decision ??? ?? ?? ?
  • 9. ???? J ????? ??? ?? ????? @ ??????, ??? ?? ??(??? ?? ?)? ?? 9 ??(??) ?? ?? ?? ?? ?? ??? ????? ? ? ??? ???? ?? ? ??? ? ???? Logistic Yes/No, True/False Logistic regression ???? ???? ?? ?? ???? (Discrete) Classification ?? ???? ??, ??? ??, ????? ?? ? ?? ??? (Continuous) Regression, Prediction, ¡­
  • 10. ???? J ????? ??? ?? ????? @ ??????, ?? ?? - regression 10 ??? ?(point, ???)???? Input X? output Y ??? ???(??)? ?? ?
  • 11. ???? J ????? ??? ?? ????? @ ??????, ???? ¨C Classification (??) Input X? ?? label(output Y, discrete values) ? ??? ? CAT (1) DOG (2) ?? X ?? Y
  • 12. ???? J ????? ??? ?? ????? @ ??????, ???? - Classification Input X? ?? label(output Y) ? ??? ? 0 1 2 ... 9 ?? X ?? Y
  • 14. ???? J ????? ??? ?? ????? @ ??????, Fit & Modeling ???? ??? ?? 5~6 ??? ??? ??(???)?? ?? 14
  • 15. ???? J ????? ??? ?? ????? @ ??????, Fit & Modeling ???? ?? ?? 1?? ?? ??? ???? ?? 15
  • 16. ???? J ????? ??? ?? ????? @ ??????, Fit ?? ?? ?? ???? ?? ?? ?? ???? 16
  • 17. ???? J ????? ??? ?? ????? @ ??????, ? ? ?? ?? ?? ???? ?? ? ? ???? ?? ??? ???? ?? 17 Fitting
  • 18. ???? J ????? ??? ?? ????? @ ??????, ? ??? ??? ??? 18
  • 19. ???? J ????? ??? ?? ????? @ ??????, Exponential fit: y = aebx ? ???(?)? ?? fit ?? a, b ?? ??? ? ????? 2?? ? ??. (a, b) 19
  • 20. ???? J ????? ??? ?? ????? @ ??????, Power fit: y = axb 20 ? ???(?)? ?? fit ?? a, b ?? ??? ? ????? 2?? ? ??. (a, b)
  • 21. ?? ?? ? ???? ?? (????? ???? ?? ???) 21
  • 22. ???? J ????? ??? ?? ????? @ ??????, ¨C H.B. BARLOW ¡°Intelligence is the art of good guesswork¡±
  • 23. ???? J ????? ??? ?? ????? @ ??????, ¨C ? ? ? J ¡°???? ?? ???? ???? ??, ??? ???? ???? ?? ?¡±
  • 24. ???? J ????? ??? ?? ????? @ ??????, ??? ¨C fitting ? ?? ?? ?? ?? 24 ??? ??? ? ??? ?????, ??? ??? ??? ?? ?? ??? ????.
  • 25. ???? J ????? ??? ?? ????? @ ??????, ??? ? Input ¨C output ?? ??/??/??/??? ?? ? ???? ??? ???? 25 * ???? ???? ????? ??? ??? ???? ??? ??? ??. X? ???? feature? ??? ? ?? ??? ????. ????: ?? x? ?? ? ??? y? ???? ??.
  • 26. ???? J ????? ??? ?? ????? @ ??????, ????? ??? ?? ? (??) 26 ?? ? ???(X) ???(Y) Features Class, Label Pattern Function Vectors Relation ??/??? ??? (training/test) Probability Function
  • 27. ???? J ????? ??? ?? ????? @ ??????, ??? ?Input ¨C output ???? 27 ? ?
  • 28. ???? J ????? ??? ?? ????? @ ??????, ??? ¨C ?? ? ?? ? Input ¨C output ??? ?? 28 0.0 0.0 0.0 ¡­. 0.0 0.0 0.0 ¡­. 0.0 0.0 0.0 ¡­. 0.9 0.8 0.1 ¡­ 0.2 0.3 0.5 ¡­ 0.2 0.3 0.5 ¡­ ¡­ ?? ??
  • 29. ???? J ????? ??? ?? ????? @ ??????, ????? (2?1?) ? ???(??)? 2??? ?? 2? ???? ? ???? ??? ??? ????(??)? ?? ?? 29
  • 30. ???? J ????? ??? ?? ????? @ ??????, ????? (3?1?) 30 ? X (x, y, z): ??? ? A, B? ?? ???? ? A? ??? Weight ? B? ??? Bias
  • 31. ???? J ????? ??? ?? ????? @ ??????, 31 ????? (N?1?) ? X (x1, x2, ¡­, xn): ??? ? A, B? ?? ???? ? A? ??? Weight ? B? ??? Bias
  • 32. ???? J ????? ??? ?? ????? @ ??????, ??? ¨C ?? ?? ?? ? ?? output? ??? output? ??(Erorr, Loss, Cost)? ? ????? ????? ? (minimize) ? Iteration == Loop == Epoch 32 0.9 0.8 0.1 ¡­ 0.2 0.3 0.5 ¡­ 0.2 0.3 0.5 ¡­ ¡­ X Y¡¯Y ?? ???? E = Y ¨C Y¡¯ ????(W, b) ??
  • 33. ???? J ????? ??? ?? ????? @ ??????, ??? ?? ? ??(Loss, Cost)? ????? ?? ?? ?? ???? (weights)? ????? ??? ??? ??? ???. 33 X: ?? ?? ??? Y: ?? ???(???) Y¡±: ??? ?? ??? ??(MSE, cost, loss)?? ????
  • 34. ???? J ????? ??? ?? ????? @ ??????, Training, Validation, Test ? Training ¨C ??? ? Validation ¨C ?? ????: ? ? ??? ???? ?? ? Testing ¨C ?? ????, ?? ??? ??? ?? ?? 34 ??? ?? ??? ??? (Training) ???? (Testing) ?? ??? (Validation) 80%, 10%, 10%
  • 35. ???? J ????? ??? ?? ????? @ ??????, ??(training)? ??? 35 training(X, Y) pair: Data for Training Y¡¯ - ??? ??? ????? ????? (weights, biases) ?? (???? ??) Save X¡¯: Data for Test test ????? ????? (weights, biases) Load Threshold & Decision
  • 37. ???? J ????? ??? ?? ????? @ ??????, ??? ??? ?? 37 ? ??????? ???? ??, ??? ??? ??? ??
  • 38. ???? J ????? ??? ?? ????? @ ??????, ?? ??? ?? 38 Supervised Unsupervised Reinforcement Learning ???? ?? (X, Y)? ?? ???? ?? Guess & Measure ??? ??? ? ? ??? ?? ? ?: ??, ??
  • 39. ???? J ????? ??? ?? ????? @ ??????, Supervised ?? ??) Lunit 39
  • 40. ???? J ????? ??? ?? ????? @ ??????, ??) ?? 40
  • 41. ???? J ????? ??? ?? ????? @ ??????, Unsupervised??) Dable?? ??, ?? ?? 41
  • 42. ???? J ????? ??? ?? ????? @ ??????, Unsupervised ??) Watcha ?? ??, ?? ?? 42
  • 44. ??, ?? ???? ???? 44
  • 45. ???? J ????? ??? ?? ????? @ ??????, ?????? ??? ????? ?? ????? ???. ????? ??? ???????? ????? ????? ??/????? ??? ???? ?? ? ?? ???? ? 45 ???? ???? ??? ??(Method) ??(Goal)
  • 46. ???? J ????? ??? ?? ????? @ ??????, ???? == ??? ?? ??????? ??(???)? ????? ??/??/??/? ?/??? ???? ?. ¨¤ Learning from Data 46 Inductive Learning (learning by examples) automatic discovery of regularities in data through the use of computer algorithms and generalizing those into new but similar data
  • 47. ???? J ????? ??? ?? ????? @ ??????, ?????? ? ?? ? ???? ?? ????? ??? ?? ??? ??? ?????? ???? ?? ? ??? ¨C ?, ?? ?? (Collaboration filtering) ? ??? ¨C ???? ?? (Associative Rules) ? ¡­ 47
  • 48. ???? J ????? ??? ?? ????? @ ??????, ???? ? ????? ??? ? ?? ? (?? ??/??/?? ????) ? ??, ??? ?? ? ??, ?? ???? ? ??? ? ?? ? ???? 48
  • 49. ???? J ????? ??? ?? ????? @ ??????, ????? ????? ??? ??? ???? ?? ??? ??/?? ? ???? (??,??,??,???,???) ? ???? ??? (???) ? ?? (????, ????) ? ?? (??) ? IoT ¨C ??? ??? ?? ? ????+????? ? ??? ??,???
  • 50. ???? J ????? ??? ?? ????? @ ??????, ?? ?? (Pattern Recognition) ? 1990?? ?? ? ????? ??? ???? ??? ???? ?? ?? ? ¡®??? ??¡¯ ??? ?? ??? ?? ? ¡®??? ??? ??/???? ???? ? ¡®?? ??¡¯? ???(??? ????)? ???? ? ? ?? 50
  • 52. ???? J ????? ??? ?? ????? @ ??????, ? ???/???? AI???? ??? ????? ??? ??????? 52 ??? ¨C ???? ??? ??? ???? ????? ! ??/??/??/???? ?? ??? ?? ??? ?? !! ???
  • 53. ???? J ????? ??? ?? ????? @ ??????, ??? ?? ??? ???? ???? ??? ! 53 ???? ??? ???? 1.??? 2.???3.?? ??? ??,??,???? Data Scientist Data Engineer ??? ??, ??
  • 55. ???? J ????? ??? ?? ????? @ ??????, 55
  • 56. ???? J ????? ??? ?? ????? @ ??????, Statistics vs Machine Learning 56https://www.datasciencecentral.com/profiles/blogs/machine-learning-vs-traditional-statistics-different-philosophi-1 https://svds.com/machine-learning-vs-statistics/ ¡°Machine learning is for Computer Science majors who couldn¡¯t pass a Statistics course.¡±
  • 57. ???? J ????? ??? ?? ????? @ ??????, Statistics vs Machine Learning 57https://www.datasciencecentral.com/profiles/blogs/machine-learning-vs-traditional-statistics-different-philosophi-1 https://svds.com/machine-learning-vs-statistics/ ¡°Machine learning is essentially a form of applied statistics¡±
  • 58. ???? J ????? ??? ?? ????? @ ??????, Statistics vs Machine Learning 58https://www.datasciencecentral.com/profiles/blogs/machine-learning-vs-traditional-statistics-different-philosophi-1 https://svds.com/machine-learning-vs-statistics/ ¡°Machine learning is Statistics minus any checking of models and assumptions.¡±
  • 59. ???? vs ??/?? ?? ? Deterministic ? ??, ?? ?? ?? ? ???? ????, ??? ? ? ?? ?? ?? ?? ?? ?? ? Stochastic (probabilistic + time) ? ????? ?? ?? ??? ?? ??? ??? ? ???? ?? ?? ?? ?? 59
  • 60. ???? J ????? ??? ?? ????? @ ??????, Machine Learning (ML) Traditional statistics (TS) Goal: ¡°learning¡± from data of all sorts Goal: Analyzing and summarizing data No rigid pre-assumptions about the problem a nd data distributions in general Tight assumptions about the problem and data distri butions More liberal in the techniques and approaches Conservative in techniques and approaches Generalization is pursued empirically through t raining, validation and test datasets Generalization is pursued using statistical tests on the training dataset Not shy of using heuristics in approaches in se arch of a ¡°good solution¡± Using tight initial assumptions about data and the pr oblem, typically in search of an optimal solution unde r those assumptions Redundancy in features (variables) is okay, and often helpful. Preferable to use algorithms desi gned to handle large number of features Often requires independent features. Preferable to us e less number of input features Does not promote data reduction prior to learn ing. Promotes a culture of abundance: ¡°the mo re data, the better¡± Promotes data reduction as much as possible before modeling (sampling, less inputs, ¡­) Has faced with solving more complex problems in learning, reasoning, perception, knowledge presentation, ¡­ Mainly focused on traditional data analysis 60
  • 61. ?? ?? vs ???? 61
  • 62. ???? vs ???? ???? ? ???? ???? ????? ? ? ????? ?? ? ????? ??? ??? ??? ? ?? ???? ?. ?? ???. ???? ? ????? step-by-step ?? ?? ? ?? ??/??/??? ?? ????? ??? ? ????? ????? ?? 62
  • 63. ???? J ????? ??? ?? ????? @ ??????, ???? ?? - sorting 63
  • 64. ???? J ????? ??? ?? ????? @ ??????, ???? ?? - sorting 64
  • 65. ???? J ????? ??? ?? ????? @ ??????, ???? ?? - sorting 65