ݺߣ

ݺߣShare a Scribd company logo
‫تĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬ
‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬
1‫تتتتتتت‬ .
‫تتتتتتتتت‬
‫تتتتت‬ ‫تت‬ 2‫تتتتت‬ .
‫ت‬
‫تتتتت‬
‫تتتت‬
3‫تتتتت‬ .
‫تت‬ ‫تتت‬
‫تت‬4.
‫تتتتت‬
‫ت‬
5.
‫تتتت‬
‫تتت‬ ‫ت‬
‫تت‬
6.
‫تتتت‬
‫ت‬ ‫تتت‬
‫تتتت‬
‫تت‬
‫تتتت‬
‫تت‬
‫تتتت‬
‫ت‬
‫تتتت‬
‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬


‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬
‫تتت‬ ‫تتت‬ ‫تت‬ ‫تتتت‬ ‫تت‬ ‫تتت‬ ‫تتتت‬ ‫تتتتت‬
)‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬MCDM(
‫تتتت‬ ‫تتتتت‬ ‫تتتتتتت‬
‫تĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬ‫تĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬ‫تĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬ‫تĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬīتĬ‫ت‬
n
)xn(
...
2
)x2(
1
)x1(
r1n … r12 r11 1(A1)
r2n … r22 r21 2(A2)
… … … … ...
rmn … rm2 rm1 m (Am)
m
‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬
Objective)
Attribute)
‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬:‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬


MODM
‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬
‫ت‬‫ت‬‫ت‬‫ت‬:‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬



MADM
‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬




‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬

‫تتتتت‬ ‫تتت‬‫تتتت‬ ‫تتت‬


‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬

‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬
1.
2.
3.
4.
5.
6.
7.
0
‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬
4
1‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬.






1.1‫صصصص‬ ‫صصصصصصص‬ .
‫صصصص‬ ‫ص‬ ‫صصص‬ ‫صصص‬






3.1‫صصص‬ ‫صصصص‬ ‫صصصصصصص‬ .
‫صصصص‬ ‫ص‬ ‫صصصص‬ ‫صصصص‬ ‫صص‬
2





2.1‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬.

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10
2‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬.
4
3‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬.


1.3‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬.
n
)xn(
...
2
)x2(
1
)x1(
r1n … r12 r11 1(A1)
r2n … r22 r21 2(A2)
… … … … ...
rmn … rm2 rm1 m (Am)
4‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬.
10 15 1
7 4 7
3 12 2
9 5 5
20 3
5 30 3 9
1 30 4
3 1 3
5‫صĬīصĬīصĬīصĬīصĬīصĬīصĬīصĬīصĬīصĬīصĬ.
1.5‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬-
∑=
=
m
i
ij
ij
ij
r
r
n
1
2
∑=
4
1
2
i
ija
7
1
0
4 7 15
1
0.547
0
.
3
1
5
0.560 0.547 0.367
9 3 5 5 12
2
0
.
853.40
30201215 2222
4
1
2
1
=+++
=∑=i
ir
294.0
853.40
12
367.0
853.40
15
21
11
==
==
n
n
1.5(‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬)‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬-
2.5‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬.



ij
ij
ij
rMax
r
n =
ij
ij
ij
rMax
r
n 1−=
)
1
(
1
ij
ij
ij
r
Max
r
n =
6‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬.




Wn … W2 W1
xn ... x2 x1
r1n … r12 r11 A1
r2n … r22 r21 A2
… … … … ...
rmn … rm2 rm1 Am
1.6‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬-
ji,;
1
∀=
∑=
n
i
ij
ij
ij
a
a
P
)(ln
1
m
k =
[ ] j;ln
1
∀−= ∑=
m
i
ijijj ppkE j;1 ∀−= jj Ed
j
d
d
w n
j
j
j
j ∀=
∑=
;
1
7 10 4 7 15
1
0.292 0.227 0.308 0.292 0.195
9 3 5 5 12
2
0.375 0.068 0.384 0.208 0.156
5 30 3 9 20
3
0.208 0.682 0.231 0.375 0.260
3 1 1 3 30
4
0.125 0.023 0.077 0.125 0.389
24 44 13 24 77
Pij
77=30+20+12+15
0.195=77/15
1.6(‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬)‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬-
Ej
721.0
)4ln(
1
)ln(
1
===
m
k
E1 E2 E3 E4 E5
0.956 0.947 0.913 0.625 0.947
956.0)]389.0ln(*389.0)260.0ln(*260.0
)156.0ln(*156.0)195.0ln(*195.0[721.01
=+
++−=E
dj d1 d2 d3 d4 d5
1-Ej
0.04
4
0.05
3
0.08
7
0.37
5
0.05
3
0.61
2
072.0
612.0
044.01
1 ===
∑ jd
d
wW1 W2 W3 W4 W5
0.072 0.087 0.142 0.613 0.087
1.6(‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬)‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬‫ص‬-
2.6‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬-
Aa[i,jWi/Wja[i,j









=
=+
=+
0),(
0
0
yxg
y
g
y
f
x
g
x
f
δ
δ
λ
δ
δ
δ
δ
λ
δ
δ
( )
nl
n
j
lwjwlja
n
i
ilaiwlwila
n
i
n
j
n
i
iwiwjwjiaL
n
i
iWst
n
i
n
j
iwjwijaz
,...,2,10
1
)(
1
)(
1 1
1
1
22),(
1
1
:
1 1
2)()min(
==+∑
=
−−∑
=
−
∑
=
∑
=
−∑
=
+−=
=∑
=
∑
=
∑
=
−=
λ
λ
),(),( yxgyxfu λ+=
2206.0
6059.0
1735.0
1
0
4
45
3
10
2
5
0
3
10
9
20
3
10
0
2
5
3
1015
13.
3
1.)
2
1(3,
3
1
.|,,
1
3
12
313
2
1
3
11
3
2
1
321
321
321
321
2312132312
,,
=
=
=
=++
=++−−
=+−+−
=+−−
==≠=⇒==
≠∃










=
w
w
w
www
www
www
www
aaaaa
aaakji
A
jijkik
λ
λ
λ
(‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬)‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬
3.6‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬-
nnnnnn
nn
nn
WWaWaWa
WWaWaWa
WWaWaWa
.
.
.
2211
22222121
11212111
λ
λ
λ
=+++
=+++
=+++




WA
WWA .λ=×
n
0)det( =− IA λ 0)( max =×− WIA λ







=
























nnnnn
n
n
w
w
w
aaa
aaa
aaa
:
...
:...::
...
...
2
1
21
22221
11211
)2493.0,5936.0,1571.0(
1
0
0536.2
3
12
30536.23
2
1
3
10536.2
0)(0536.3
0
2
5)1(3)1(
1
3
12
313
2
1
3
11
)det(
1
3
12
313
2
1
3
11
321
3
2
1
maxmax
3
=
=++
=




















−
−
−
=−=
=+−−−=
−
−
−
=−










=
T
W
www
w
w
w
WIA
IA
A
λλ
λλ
λ
λ
λ
λ
(‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬)‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬
7‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬‫ت‬.

SAW
ELECTRE
TOPSIS
LINMAP
AHP
A1 3.0 5 9 24000 1
A2 1.2 7 5 25000 3
A3 1.5 9 3 32000 7
A1 1 1 1.00 0.75 1
A2 0.4 0.71 0.55 0.78 0.33
A3 0.43 0.55 0.33 1.00 0.14
Min =0.75
Min =0.33
Min =0.14
Max { min } = 0.75
A1
2Maxi min
minmin
max
‫تت‬ ‫تتتت‬ ‫تت‬ ‫تتتتت‬ ‫تت‬ ‫تتتتت‬ ‫تتتت‬
‫تتتتت‬ ‫تت‬ ‫ت‬ ‫ت‬ ‫تتتت‬ ‫ت‬ ‫تت‬ ‫ت‬ ‫ت‬ ‫تتتت‬
‫تت‬ ‫ت‬ ‫ت‬ ‫تتتت‬Max‫تتتت‬ ‫تت‬ ‫ت‬ ‫ت‬ ‫ت‬ ‫تتت‬
‫تتتتتتت‬ ‫تت‬ ‫ت‬ ‫ت‬ ‫تتتت‬Max‫تت‬
.‫تتتت‬ ‫تت‬ ‫تتتتتت‬
Max =1
Max =0.78
Max =0.14
Max { max } = 1
A1A3
A1 3.0 5 9 24000 1
A2 1.2 7 5 25000 3
A3 1.5 9 3 32000 7
A1 1 1 1.00 0.75 1
0.780.33A2 0.4 0.71
0.55
A3 0.43 0.55 0.33 1.00 0.14
4)Conjunctive(
DM
5Disjunctive
conjunctive
DM
n.imanipour,2008
)ordinal(

1.7-SAW






= ∑=
n
j
jiji wnMaxAA
1
*
|










=


























696.0
749.0
529.0
234.0
263.0
076.0
189.0
239.0
*
1333.0115.0
778.0556.0778.06.01
333.01556.04.0333.0
Simple Additive Weighting method
2.7-TOPSIS
N
W
VnnWNV **=
+
jV
−
jV
+
jd
−
jd
+−
−
+
=
ii
i
i
dd
d
CL*
V
V
m1,2,...,i,)(
m1,2,...,i,)(
1
2
1
2
=−=
=−=
∑
∑
=
−−
=
++
n
j
jiji
n
j
jiji
vvd
vvd
*
iCLCL
Technique for Order-Preference by Similarity to Ideal Solution










=






















149.0119.0063.0238.0
099.0179.0052.0119.0
198.0258.0042.0149.0
267.0000
0336.000
00092.00
000305.0
*
557.0355.0684.0781.0
371.0532.0570.0390.0
743.0769.0456.0488.0
C1 C2 C3 C4
A1 5 8 13 4
A2 4 10 9 2
A3 8 12 6 3
V
.198]63,0.258,0[0.119,0.0],,,[ 4321 ==+
iiiij vMaxvMaxvMaxvMinV
.099]42,0.119,0[0.238,0.0],,,[ 4321 ==−
iiiij vMinvMinvMinvMaxV
2.7-TOPSIS)‫(تتتتت‬
189.0
127.0
037.0
3
2
1
=
=
=
+
+
+
d
d
d
055.0
134.0
192.0
3
2
1
=
=
=
−
−
−
d
d
d
037.0)198.0198.0()258.0258.0()063.0042.0()119.0149.0( 2222
1 =−+−+−+−=+
d
225.0
513.0
838.0
*
3
*
2
*
1
=
=
=
CL
CL
CL
838.0
037.0192.0
192.0*
1 =
+
=CL
2.7-TOPSIS)‫(تتتتت‬
4.7-AHP
)Analytical Hierarchy process-AHP(1980
Analytic Hierarchy Process
‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
Reciprocal Condition(
ABnBAn/1
Homogeneity(
ABAB
Dependency(
Expectation(
‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
1234
‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
n ... 2 1
1)x1(
2)x2(
...
m (xm(
1
3
5
7
9
2468
‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬

ABBCAC
a[i,k].a[k,j]=a[i,jijk
1.0
(‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬)‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
CBA
1 3 2 2
3/1 1 4/1 4/1
2/1 4 1 2/1
2/1 4 2 1
2.33 12 5.25 3.7
5
0.43 0.25 0.38 0.5
3
0.39
8
0.14 0.08 0.05 0.0
7
0.08
5
0.21 0.33 0.19 0.1
3
0.21
8
0.21 0.33 0.38 0.2
7
0.29
9
(‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬)‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
A B C
A 1 2 8 0.59
3
B 2/1 1 6 0.34
1
C 8/1 6/1 1 0.06
6
A B C
A 0.1
23
B 0.3
20
C 0.5
57
A B C
A 0.08
7
B 0.27
4
A B C
A 0.26
5
B 0.65
5
(‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬)‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
0.398 0.085 0.218 0.29
9
A 0.123 0.087 0.593 0.26
5
0.265
B 0.320 0.274 0.341 0.65
5
0.421
C 0.557 0.639 0.066 0.08
0
0.314
0.265=0.265*0.299+0.593*0.218+0.087*0.085+0.123*0.398A
(‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬)‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
An
n
nλλλ ,,, 21 
n
n
i
i =∑=1
λ
n≥maxλ
maxλ
nn
(‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬)‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
1
.. max
−
−
=
n
n
II
λ
...
..
..
RII
II
RI =
n 1 2 3 4 5 6 7 8 9 10
I.I.R. 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.45
maxλ
maxλ
(‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬)‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
1.A
2.W.
3.A
1-3-WA
2-3-W
3-3-
4.
5.
maxλ
WmaxλWAW maxλ=
Wmaxλmaxλ
maxλ
017.0
58.0
01.0
...
..
..
010.0
13
3019.3
1
..
019.3
3
985.2
066.0
197.0
032.3
341.0
034.1
040.3
593.0
803.1
066.0
341.0
593.0
*
197.0
034.1
803.1
066.0
341.0
593.0
*
1
6
1
8
1
61
2
1
821
066.0
341.0
593.0
1
6
1
8
1
61
2
1
821
3*3
max
3max2max1max
max
3max
2max
1max
max
===
=
−
−
=
−
−
=
=
++
=
==
==
==










=










=






















=










=












=
RII
II
RI
n
n
II
AW
WA
λ
λλλ
λ
λ
λ
λ
λ
‫ي‬
(‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬)‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬




‫ي‬‫ي‬‫ي‬‫ي‬‫ي‬
1.""1382
2.1384
3.1381
4.1385
5.1381
6.1378
7.1385
8.
9.

More Related Content

درس تئوری تصمیم گیری (1)