ݺߣ

ݺߣShare a Scribd company logo
Solution
• 0
=
⋅ n
u at control pt #1:
The velocity at control pt #1 is the sum of the freestream + 3 point vortices’
velocities at that point:
1 2 3
1
2 2 2
2 2 2
u V i i i j
π π π
∞
Γ Γ Γ
= + − +
     
     
     
The normal at control pt #1 is:
1
1 2
1 1 0
2 2
2 2
n i
u n V
π π
∞
= −
Γ Γ
⇒ ⋅ = − − + =
   
   
   
Rearranging:
1 2
V
π π ∞
Γ Γ
− = − (1)
• 0
=
⋅ n
u at control pt #2:
Now, following the same procedure for control pt #2:
 =10 miles
V = 100 mph
8
Γ1
Γ2
Γ3
x
y
Solution
16.100 2002 2
2
2 3
2 2
1 3
2 2
0
2
n i j
V
u n
π π
∞
= +
Γ Γ
⋅ = − + =
2 3
2
V
π π
∞
Γ Γ
− = (2)
• 0
=
⋅ n
u at control pt #3:
3
1 3
3 3
1 3
2 2
0
2
n i j
V
u n
π π
∞
= −
Γ Γ
⋅ = + − =
1 3
2
V
π π
∞
Γ Γ
⇒ − + = (3)
Final System of Equations
Combine the numbered equations:
1
2
3
vortex
strengths
(unknowns)
Influence matrix
1 1
0
1 1
0
2
1 1
0
2
i
V n
V
V
V
π π
π π
π π
∞
∞
∞
∞
   
−
  −
 
Γ
 
   
 
   
− Γ =
 
   
Γ
 
     
 
−  
 
 
i
The problem with these equations is that they have infinitely many solutions.
One clue is that the determinant of the matrix is zero. In particular we can add a
constant strength to any solution because:
0
0
0
influence
0
matrix
 
Γ
 
 
 
  Γ =
 
 
Γ
 
   
 
Solution
16.100 2002 3
⇒ Given a solution
0
0
0
Γ
 
 
Γ
 
Γ
 
 
, then
1 0
2 0
3 0
Γ Γ
   
   
Γ + Γ
   
Γ Γ
   
   
is also a solution where 0
Γ is arbitrary.
So, how do we resolve this?
Answer: the Kutta condition!
2 2
. . . .
1 1
2 2
t e upper t e lower
p V p V
ρ ρ
+ = +
⇒ 0
upper lower
V V
= ≠
What’s the Kutta condition for the windy city problem:
Kutta: 3 0
Γ = ⇒ no flow around node 3!
So, we can now solve our system of equations starting with 0
3 =
Γ
1
2
3
2
2
0
V
V
π
π
∞
∞
Γ = −
⇒ Γ =
Γ =
V
8
Γ1
Γ2
Γ3

More Related Content

What's hot (17)

PPT
8.1.6example2
Talia Carbis
PDF
Quartile deviation
Nadeem Uddin
PDF
Algorithm Strassen's Method
Jim Chang
PDF
HodgeCyce
Bridget Jones
DOCX
Heat Map Modeling Using Resistive Network
ssurgnier
PDF
Reverse string
Warawut
PDF
Trigonometry cheat sheet
Mohammed Jawad Ibne Ishaque (Taki)
PDF
Deber corte
AldoChandiAngulo
DOC
Syed Ubaid Ali Jafri - Cryptography Techniques
Syed Ubaid Ali Jafri
PDF
Solucionario p2 conc. avanzado
omar julca mendoza
PPTX
Trigonometry Cheat Sheet
Jayson Albrey Sastre
PPT
Trig identities
drkamalpanchal
PDF
Trig cheat sheet
Aneel Ahmad
PDF
Semana 3. integral de una función vectorial
Katherine Jessenia Vargas Quispe
PDF
Trigo Sheet Cheat :D
Quimm Lee
8.1.6example2
Talia Carbis
Quartile deviation
Nadeem Uddin
Algorithm Strassen's Method
Jim Chang
HodgeCyce
Bridget Jones
Heat Map Modeling Using Resistive Network
ssurgnier
Reverse string
Warawut
Trigonometry cheat sheet
Mohammed Jawad Ibne Ishaque (Taki)
Deber corte
AldoChandiAngulo
Syed Ubaid Ali Jafri - Cryptography Techniques
Syed Ubaid Ali Jafri
Solucionario p2 conc. avanzado
omar julca mendoza
Trigonometry Cheat Sheet
Jayson Albrey Sastre
Trig identities
drkamalpanchal
Trig cheat sheet
Aneel Ahmad
Semana 3. integral de una función vectorial
Katherine Jessenia Vargas Quispe
Trigo Sheet Cheat :D
Quimm Lee

Recently uploaded (20)

PPTX
Engineering Quiz ShowEngineering Quiz Show
CalvinLabial
PDF
Decision support system in machine learning models for a face recognition-bas...
TELKOMNIKA JOURNAL
PPTX
Stability of IBR Dominated Grids - IEEE PEDG 2025 - short.pptx
ssuser307730
PDF
Plant Control_EST_85520-01_en_AllChanges_20220127.pdf
DarshanaChathuranga4
PPTX
Comparison of Flexible and Rigid Pavements in Bangladesh
Arifur Rahman
PDF
bs-en-12390-3 testing hardened concrete.pdf
ADVANCEDCONSTRUCTION
DOCX
Engineering Geology Field Report to Malekhu .docx
justprashant567
PPTX
Electrical_Safety_EMI_EMC_Presentation.pptx
drmaneharshalid
PDF
13th International Conference of Security, Privacy and Trust Management (SPTM...
ijcisjournal
PDF
Designing for Tomorrow – Architecture’s Role in the Sustainability Movement
BIM Services
PDF
FSE-Journal-First-Automated code editing with search-generate-modify.pdf
cl144
PPSX
OOPS Concepts in Python and Exception Handling
Dr. A. B. Shinde
PDF
June 2025 - Top 10 Read Articles in Network Security and Its Applications
IJNSA Journal
PPTX
FSE_LLM4SE1_A Tool for In-depth Analysis of Code Execution Reasoning of Large...
cl144
PDF
lesson4-occupationalsafetyandhealthohsstandards-240812020130-1a7246d0.pdf
arvingallosa3
PPTX
Computer network Computer network Computer network Computer network
Shrikant317689
PDF
Tesia Dobrydnia - An Avid Hiker And Backpacker
Tesia Dobrydnia
PDF
NFPA 10 - Estandar para extintores de incendios portatiles (ed.22 ENG).pdf
Oscar Orozco
PPTX
Precooling and Refrigerated storage.pptx
ThongamSunita
PDF
CLIP_Internals_and_Architecture.pdf sdvsdv sdv
JoseLuisCahuanaRamos3
Engineering Quiz ShowEngineering Quiz Show
CalvinLabial
Decision support system in machine learning models for a face recognition-bas...
TELKOMNIKA JOURNAL
Stability of IBR Dominated Grids - IEEE PEDG 2025 - short.pptx
ssuser307730
Plant Control_EST_85520-01_en_AllChanges_20220127.pdf
DarshanaChathuranga4
Comparison of Flexible and Rigid Pavements in Bangladesh
Arifur Rahman
bs-en-12390-3 testing hardened concrete.pdf
ADVANCEDCONSTRUCTION
Engineering Geology Field Report to Malekhu .docx
justprashant567
Electrical_Safety_EMI_EMC_Presentation.pptx
drmaneharshalid
13th International Conference of Security, Privacy and Trust Management (SPTM...
ijcisjournal
Designing for Tomorrow – Architecture’s Role in the Sustainability Movement
BIM Services
FSE-Journal-First-Automated code editing with search-generate-modify.pdf
cl144
OOPS Concepts in Python and Exception Handling
Dr. A. B. Shinde
June 2025 - Top 10 Read Articles in Network Security and Its Applications
IJNSA Journal
FSE_LLM4SE1_A Tool for In-depth Analysis of Code Execution Reasoning of Large...
cl144
lesson4-occupationalsafetyandhealthohsstandards-240812020130-1a7246d0.pdf
arvingallosa3
Computer network Computer network Computer network Computer network
Shrikant317689
Tesia Dobrydnia - An Avid Hiker And Backpacker
Tesia Dobrydnia
NFPA 10 - Estandar para extintores de incendios portatiles (ed.22 ENG).pdf
Oscar Orozco
Precooling and Refrigerated storage.pptx
ThongamSunita
CLIP_Internals_and_Architecture.pdf sdvsdv sdv
JoseLuisCahuanaRamos3
Ad

16100lectre14 cg

  • 1. Solution • 0 = ⋅ n u at control pt #1: The velocity at control pt #1 is the sum of the freestream + 3 point vortices’ velocities at that point: 1 2 3 1 2 2 2 2 2 2 u V i i i j π π π ∞ Γ Γ Γ = + − +                   The normal at control pt #1 is: 1 1 2 1 1 0 2 2 2 2 n i u n V π π ∞ = − Γ Γ ⇒ ⋅ = − − + =             Rearranging: 1 2 V π π ∞ Γ Γ − = − (1) • 0 = ⋅ n u at control pt #2: Now, following the same procedure for control pt #2: =10 miles V = 100 mph 8 Γ1 Γ2 Γ3 x y
  • 2. Solution 16.100 2002 2 2 2 3 2 2 1 3 2 2 0 2 n i j V u n π π ∞ = + Γ Γ ⋅ = − + = 2 3 2 V π π ∞ Γ Γ − = (2) • 0 = ⋅ n u at control pt #3: 3 1 3 3 3 1 3 2 2 0 2 n i j V u n π π ∞ = − Γ Γ ⋅ = + − = 1 3 2 V π π ∞ Γ Γ ⇒ − + = (3) Final System of Equations Combine the numbered equations: 1 2 3 vortex strengths (unknowns) Influence matrix 1 1 0 1 1 0 2 1 1 0 2 i V n V V V π π π π π π ∞ ∞ ∞ ∞     −   −   Γ             − Γ =       Γ           −       i The problem with these equations is that they have infinitely many solutions. One clue is that the determinant of the matrix is zero. In particular we can add a constant strength to any solution because: 0 0 0 influence 0 matrix   Γ         Γ =     Γ        
  • 3. Solution 16.100 2002 3 ⇒ Given a solution 0 0 0 Γ     Γ   Γ     , then 1 0 2 0 3 0 Γ Γ         Γ + Γ     Γ Γ         is also a solution where 0 Γ is arbitrary. So, how do we resolve this? Answer: the Kutta condition! 2 2 . . . . 1 1 2 2 t e upper t e lower p V p V ρ ρ + = + ⇒ 0 upper lower V V = ≠ What’s the Kutta condition for the windy city problem: Kutta: 3 0 Γ = ⇒ no flow around node 3! So, we can now solve our system of equations starting with 0 3 = Γ 1 2 3 2 2 0 V V π π ∞ ∞ Γ = − ⇒ Γ = Γ = V 8 Γ1 Γ2 Γ3