際際滷

際際滷Share a Scribd company logo
Big data
Benoit Lacherez
blacherez@gmail.com
Sauf indication contraire, tout le contenu de cette pr辿sentation est sous licence CC BY 4.0 France
Big data - approche intuitive
"Avec suffisamment de
donn辿es,
les chiffres parlent tout
seuls"
Chris Anderson
Image :By Joi[CC BY 2.0], via Wikimedia Commons
Data driven management
HIghest Paid Persons Opinion
By Gusjer (Hippo at dawn. Chobe National Park) [CC BY 2.0
(http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons
Les 3 V
2. Big data
Volume x Densit辿
Volume
Big data Data brokers
? Base de donn辿es SI classique
Densit辿
Dapr竪s Delort, Pierre. 2015. Le Big data. 1竪re 辿dition. Que Sais-je? 4027. Paris: PUF.
Big data - En tant que ph辿nom竪ne culturel
We define Big Data as a cultural, technological, and scholarly phenomenon
that rests on the interplay of:
(1) Technology: maximizing computation power and algorithmic accuracy to
gather, analyze, link, and compare large data sets.
(2) Analysis: drawing on large data sets to identify patterns in order to make
economic, social, technical, and legal claims.
(3) Mythology: the widespread belief that large data sets offer a higher form of
intelligence and knowledge that can generate insights that were previously
impossible, with the aura of truth, objectivity, and accuracy.
danah boyd et Kate Crawford. 束 Critical Questions for Big Data 損. Information, Communication & Society 15, no
5 (1
juin 2012): 663
Exemples dutilisation
Recommandations Amazon
Google Flu
http://www.leparisien.fr/faits-divers/justice-un-logiciel-pour-aider-les-juges-a-decider-26-04-2017-6890301.php
https://www.dalloz-actualite.fr/interview/l-utilisation-de-l-outil-predictice-decoit-cour-d-appel-de-rennes
Recherche Google
By en:User:345Kai, User:Stannered [Public domain], via Wikimedia Commons
Utilisation des r辿seaux sociaux pour le tourisme
Facebook
Opinion mining
D辿tection danomalies
Source:
https://channel9.msdn.com/Blogs/Azure/thyssenkrupp-giving-cities-a-lift-with-the-inter
net-of-things

More Related Content

2. Big data