際際滷

際際滷Share a Scribd company logo
New 9/09
Guidance Document
Laboratory Coat Selection, Use, and Care
MIT EHS Office
617-452-3477
Background: The purpose of this document is to provide guidance for selection, use and care of lab coats.
The Chemical Hygiene Plan (CHP) template for 2010 will state: A laboratory coat is required for work with
particularly hazardous substances (PHSs), unsealed radioactive materials, and certain biological agents. It is
strongly advised that researchers wear a laboratory coat when working with hazardous substances. In some cases
laboratory supervisors may identify situations where the use of lab coats or more protective apparel is mandatory.
Particularly hazardous substances (PHSs) is a term used by OSHA to refer to select carcinogens, reproductive
toxins, and substances with a high degree of acute toxicity. More information on PHSs is provided in the CHP
template. Certain biological agents refers to agents at Biosafety Level 2 or greater risk level and bloodborne
pathogens or other potentially infectious materials such as human blood or body fluids.
In general, protective clothing, including lab coats, should not be used as a substitute for engineering controls such
as a fume hood, a glove box, process enclosure, etc., or as a substitute for good work practices and personal
hygiene. It may also be necessary to supplement lab coat use with additional protective clothing, for example, a
rubber apron for handling large quantities of corrosives or hydrofluoric acid.
Lab coats:
 Provide protection of skin and personal clothing from incidental contact
 Prevent the spread of contamination outside the lab (provided they are not worn outside the lab)
 Provide a removable barrier in the event of an incident involving a spill or splash of hazardous substances
Lab coats are not designed to be the equivalent of chemical protection suits for major chemical handling or
emergencies. With the exception of a splash resistance requirement under the OSHA bloodborne pathogen
standard, there are no specific requirements in standards or guidelines for the type of protection that a lab coat is
to provide. What this means is that:
 Lab coats are not tested for typical conditions that might be encountered in a research lab with respect to
chemical use, or combined research activities.
 There is little or no information provided by manufacturers or distributors about the capability of a lab coat for
a combination of hazards. A coat that is flame resistant, such as treated cotton, may not be chemical
resistant or acid resistant.
 A coat that is advertised as flame resistant has not been tested with criteria involving flammable chemicals
on the coat. The term flame resistant refers to the characteristic of a fabric that causes it not to burn in air.
The testing criteria involves applying an open flame to the bottom edge of a strip of fabric in a test chamber
for 12 seconds and then looking at char length, after flame, and after glow, testing the self extinguishing
properties of the fabric. The flame resistance test criteria were intended to simulate circumstances of a
flash fire, or electric arc flash, not a chemical fire.
Selection. With the limitations above in mind, lab coats are made of different materials, and it is important to
select a coat of appropriate material for the types of hazards in the lab. The first step in this selection process is to
determine the types of hazards that exist in your lab and the reasons for the lab coats. The CHP Template
contains a lab specific SOP form that can be used for assessing the hazards. Another assessment tool is available
at: http://web.mit.edu/environment/pdf/ppe_form.pdf
Some questions to consider are the following:
 Does your lab work primarily with chemicals, biological agents, radioisotopes, or a mix of things?
 Are there large quantities of flammable materials (>10 gallons) or pyrophoric materials used in the open
outside a glove box?
 Are there open flames or hot processes along with a significant amount of flammables?
 How are hazardous chemicals used and what engineering controls are available, e.g. a fume hood or glove
box?
 Is there a significant risk of splash or splatter for the tasks being done?
 What is the toxicity of chemicals used?
 Is there a concern of inadvertent spread of contamination?
Once you determine hazards, you can review information on some typical lab coat materials in the Lab Coat Table
at the end of this document and determine options for your lab. One coat may not work for all lab operations.
Some people may want to provide a basic Poly/Cotton blend coat for most operations, but have available lab coats
of treated cotton or Nomex for work involving pyrophoric materials, extremely flammable chemicals, or large
quantities of flammable chemicals. If chemical splash is also a concern, use of rubber apron over the flame
resistant lab coat might be an option for these circumstances. There are also options for reusable, limited use, or
disposable one time use lab coats. There are options for button front or snap front coats, and for open sleeves or
knit sleeves.
The table at the end of this document provides information on some typical lab coat materials available, with
guidance on use and limitations. As noted above, there is limited criteria for testing lab coat materials with respect
to typical lab use scenarios, and some of the information is anecdotal. As more information becomes available, this
table will be updated.
Lab Coat Use. An appropriate size should be selected. Lab coats are available in small, medium, large or extra
large. Some lab coat services also offer custom sizes (e.g., extra long sleeves, tall, or womans fit). Lab coats
should be worn with sleeves down and fully buttoned. Wear lab coats only when in the lab or work area. Lab coats
should be removed when leaving the lab/work area to go home, to lunch, to the restroom, or meetings in
conference rooms, etc.
Cleaning. Non-disposable lab coats should be cleaned routinely, by use of a laundry service or work area
washers and dryers. Frequency of cleaning will depend on the amount of use and contamination. Information on
laundry services available is at the end of this document. Usually these companies provide the lab coats as part of
their laundry service, though in some cases, you can arrange for occasional cleaning. Personnel should not be
laundering lab coats at home. EHS is investigating the feasibility of a centralized service.
Emergency spill or splash. In the event of a significant spill of a hazardous material on the lab coat, it should be
immediately removed. If skin or personal clothing is impacted, it will be necessary to proceed to an emergency
shower. Any contaminated clothing should also be removed. Guidance should be sought from EHS about
whether the coat and clothing should be cleaned or discarded as hazardous waste.
Emergency fire. The action will depend on circumstances of the fire. If only the lab coat is on fire, remove it, leave
area, and call 100 or activate fire alarm. If lab coat and clothing are on fire, shout for help then stop, drop, and roll;
or proceed to an emergency shower (if close by) to extinguish fire. If the area is on fire, leave area, closing doors
as you leave. Activate fire alarm or call 100. Seek follow-up medical attention.
Laundry service information. Most area laundry services routinely provide and launder poly/cotton coats (80/20
or 65/35) with a per coat charge for weekly service. (For a chemical research lab, the 65/35 may be preferable).
Laundry services also often provide 100% cotton coats, but the charge per coat is greater for these. It may be
possible to arrange for laundering other types of coats, such as flame resistant coats. You will need to work with
the provider for specific arrangements, but the two companies below have some flexibility for working to provide a
service that meets your needs. The vendors below provide services to other labs and have procedures for
processing coats based on type of contamination expected. In negotiating with a vendor, you should be sure they
understand the possible contamination that may be on the lab coat. Do not use a local dry cleaner as they
generally are not familiar with proper handling of potentially contaminated items.
1. Cintas, Chelmsford, MA. Contact: Chris Angelo ((203)901-3423)
65/35% Poly/cotton and 80/20% Poly/cotton options.
Weekly service, 40cents per coat.
Cintas Uniform has a line of Fire Resistant clothing and arrangements could be made for purchase or lease of fire
resistant lab coats and a cleaning service for them.
2. Uni First  Contact: John Dzindolet ((888)-427-2806, ext. 121))
80/20 poly/cotton (Type coat normally provided as a service)
65/35 poly/cotton and 100% cotton also available.Can provide Nomex lab coats, and is working with other schools
to provide 80/20, with a few Nomex coats for special applications as part of rental service that includes laundering.
3. Falvey Linen Supply : http://www.falveylinen.com/index.htm
Lab Coat Information Table
Material/Source Splash
Resistance/Chemic
al Resistance
Flame
Resistance
Comfort Uses/Comments
Non-disposable
Polyester/Cotton Blend
80/20 or 65/35 or 40
/60 common.
(recommend at least
65%/35% for chemical
research lab setting.)
(Available from VWR
stockroom or ECAT, or
from laundry service
companies)
Yes, splash resistant.
Unknown chemical
resistance.
Anecdotally, better for
work with acids than
cotton.
No. Coats
with more
cotton will
burn less
readily.
Lightweigh
t
breathable
. The
more
cotton, the
more
breathable
.
Good for clinical settings (hospitals,
clinical labs) and labs handling
biological materials and small
amounts of flammables.)
100%Cotton
(Available from VWR
stockroom in 56 and
through ECAT and
laundry service
companies listed.)
Not splash resistant
or fluid proof.
Degraded by acids.
Anecdotally, more
resistant to solvents.
No.
Burns less
readily than
poly/cotton
blends
Lightweigh
t
breathable
Good for labs where acid handling
is limited and splash resistance is
not a concern, and there is some
work with flammables, heat and
flame. Should supplement with an
apron for acid handling.
Cotton treated with
flame retardant.
Not available from
VWR.
Sources: Lab Safety
Supply Company,
Workuniform.com
Not necessarily fluid
proof.
Degraded by acids.
More resistant to
solvents. Not
generally tested for
chemical resistance.
Yes No
information
.
Appropriate for lab settings where
there may be a significant fire
hazard, with an understanding of
the limitations of the testing criteria
for flame resistance (see
background). May be appropriate
to supplement with an apron for
acid handling. More costly. Will not
lose flame resistance with
laundering over typical use life of
coat. No bleach should be used by
the laundry service.
Dupont Nomex
Not available from
VWR.
Available from Lab
Safety Supply, Fisher
Scientific and
Workuniform.com
Unknown splash and
chemical resistance.
There is a claim for
chemical resistance,
including acids,
alkalis, and most
solvents, but specific
testing information
could not be found.
Yes Breathable
.
Expensive. Flame resistance is
maintained even with laundering,
provided bleach is not used. Good
for settings where there may be an
arc flash or flash fire. Used in
petrochemical industry.
Polypropylene lab
coat.
Available from VWR
through ECAT.
No No Yes Intended for protection from dirt,
grime, dry particulates in relatively
non-hazardous environment such
as animal handling and clean
rooms. Burns readily.
VWR Microbreathe
Lab Coat (Disposable
available from VWR
through ECAT)
Splash resistant for
blood and body fluids
and chemicals.
No Yes For clinical and biological lab
settings, and some chemical labs.
Snap front, so can be readily
removed. Not good for settings
with significant fire hazard.
Ad

Recommended

DOC
UCM SOP
Diane Martinez
PPT
Chapter 14 point of use processing
lahcmultimedia
PDF
Handling of Ingredients in Pharmaceutical Manufacturing Facility (Updated & R...
Obaid Ali / Roohi B. Obaid
PPT
Chapter 13 sterile packaging
lahcmultimedia
PPTX
Sterility Maintenance Shelf life Management
MOUNIR HATHROUBI
PPT
Praktikum kimia organik
vephemimosa
PPT
Chemical Carcinogens
Moon Girl
PPT
Chapter 21 safety
lahcmultimedia
PDF
Lab safety dos and don
Priya Hargunani
DOCX
Personal protective equipment
ALiHaider657
DOCX
CSSD SOP
khalid farooq
PPT
Chapter 9 cleaning and decontamination
lahcmultimedia
PPTX
Laboratory safety
Santosh Tathe
PPT
Chapter 6 infection prevention
lahcmultimedia
PPT
Chapter 16 low temperature sterilization
lahcmultimedia
PDF
Cleaning and Decontamination
Philippine Hospital Infection Control Society
PPTX
Gowning, gloving and scrubbing
Bea Galang
PPTX
Central sterilization supply department
Ashraf selim
PPT
Lab safety
Prbn Shah
PDF
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...
Institute of Validation Technology
PPTX
Central sterile supply department(cssd)
anees fatima
PPTX
Intoduction to Laboratory Safety Rules
Stella Maris Polytechnic; Mother Patern College of Health Sciences
DOC
CURRICULUM VITAE Neil
Neil Robertson
PPTX
Home Automation
Nazim Patwekar
DOC
Curriculum vitae
Neil Robertson
DOC
jolayemi cv
Ayodeji Jolayemi
PDF
The Rough Face Girl
sailorsis20
DOC
CURRICULUM VITAE Neil
Neil Robertson
PPTX
Arrays in c
Jeeva Nanthini

More Related Content

What's hot (14)

PDF
Lab safety dos and don
Priya Hargunani
DOCX
Personal protective equipment
ALiHaider657
DOCX
CSSD SOP
khalid farooq
PPT
Chapter 9 cleaning and decontamination
lahcmultimedia
PPTX
Laboratory safety
Santosh Tathe
PPT
Chapter 6 infection prevention
lahcmultimedia
PPT
Chapter 16 low temperature sterilization
lahcmultimedia
PDF
Cleaning and Decontamination
Philippine Hospital Infection Control Society
PPTX
Gowning, gloving and scrubbing
Bea Galang
PPTX
Central sterilization supply department
Ashraf selim
PPT
Lab safety
Prbn Shah
PDF
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...
Institute of Validation Technology
PPTX
Central sterile supply department(cssd)
anees fatima
PPTX
Intoduction to Laboratory Safety Rules
Stella Maris Polytechnic; Mother Patern College of Health Sciences
Lab safety dos and don
Priya Hargunani
Personal protective equipment
ALiHaider657
CSSD SOP
khalid farooq
Chapter 9 cleaning and decontamination
lahcmultimedia
Laboratory safety
Santosh Tathe
Chapter 6 infection prevention
lahcmultimedia
Chapter 16 low temperature sterilization
lahcmultimedia
Cleaning and Decontamination
Philippine Hospital Infection Control Society
Gowning, gloving and scrubbing
Bea Galang
Central sterilization supply department
Ashraf selim
Lab safety
Prbn Shah
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...
Institute of Validation Technology
Central sterile supply department(cssd)
anees fatima

Viewers also liked (10)

DOC
CURRICULUM VITAE Neil
Neil Robertson
PPTX
Home Automation
Nazim Patwekar
DOC
Curriculum vitae
Neil Robertson
DOC
jolayemi cv
Ayodeji Jolayemi
PDF
The Rough Face Girl
sailorsis20
DOC
CURRICULUM VITAE Neil
Neil Robertson
PPTX
Arrays in c
Jeeva Nanthini
PPTX
Functional units
Jeeva Nanthini
PPTX
Join operation
Jeeva Nanthini
CURRICULUM VITAE Neil
Neil Robertson
Home Automation
Nazim Patwekar
Curriculum vitae
Neil Robertson
jolayemi cv
Ayodeji Jolayemi
The Rough Face Girl
sailorsis20
CURRICULUM VITAE Neil
Neil Robertson
Arrays in c
Jeeva Nanthini
Functional units
Jeeva Nanthini
Join operation
Jeeva Nanthini
Ad

Similar to 2010 ehs lab_coatguidance (20)

PPTX
lab practices in the medical lab technology
rdtcartoons1
PPTX
BIOHAZARD-types and management presentation
NanditaSuthan
PDF
Personal Protective Equipment (PPE), general laboratory
Eugenia Leonova
DOCX
Lab coats
Latex Gloves
PPTX
1.Laboratory Safety measures.pptx
RENERGISTICS
PPTX
Chemical safety in histopathology lab
kanwalpreet15
PPTX
Laboratory Safety.pptx
Somnath Banerjee
PPTX
Biosafety .pptx
WajeehaRazzaq2
PPTX
Module2 2012
Jessica Montalvo-Cummings
PPTX
SAFETY LEC.FOUR Abraham Chol mapet.pptx
proffmathoumeen
PPTX
Science laboratory h&s training (all users)
Senior Technician
PPTX
Laboratory Safety, Biomedical Waste & Its Management
Arun Babu
DOCX
Lesson 1 Worksheet 2 - Lab Safety. Chemistry
NorielLIGLESIA
PPTX
Five of the most critical pieces of laboratory safety equipment
mobimedicalsupply
PPTX
5 ppe eng-1
Stephanie Mae Bele単a
PPTX
2017 Online Lab Safety - SUNY Poly logo.pptx
Jagdeep41
PDF
Introduction to health and safety
tbointon
PDF
DOH Laundry CLarification
Kelley Swann
PPTX
ENGINEERING CHEMISTRY MODULE 4.pptx
LloydChristianPPorla
PPTX
Laboratory safety
Suramya Babu
lab practices in the medical lab technology
rdtcartoons1
BIOHAZARD-types and management presentation
NanditaSuthan
Personal Protective Equipment (PPE), general laboratory
Eugenia Leonova
Lab coats
Latex Gloves
1.Laboratory Safety measures.pptx
RENERGISTICS
Chemical safety in histopathology lab
kanwalpreet15
Laboratory Safety.pptx
Somnath Banerjee
Biosafety .pptx
WajeehaRazzaq2
SAFETY LEC.FOUR Abraham Chol mapet.pptx
proffmathoumeen
Science laboratory h&s training (all users)
Senior Technician
Laboratory Safety, Biomedical Waste & Its Management
Arun Babu
Lesson 1 Worksheet 2 - Lab Safety. Chemistry
NorielLIGLESIA
Five of the most critical pieces of laboratory safety equipment
mobimedicalsupply
2017 Online Lab Safety - SUNY Poly logo.pptx
Jagdeep41
Introduction to health and safety
tbointon
DOH Laundry CLarification
Kelley Swann
ENGINEERING CHEMISTRY MODULE 4.pptx
LloydChristianPPorla
Laboratory safety
Suramya Babu
Ad

2010 ehs lab_coatguidance

  • 1. New 9/09 Guidance Document Laboratory Coat Selection, Use, and Care MIT EHS Office 617-452-3477 Background: The purpose of this document is to provide guidance for selection, use and care of lab coats. The Chemical Hygiene Plan (CHP) template for 2010 will state: A laboratory coat is required for work with particularly hazardous substances (PHSs), unsealed radioactive materials, and certain biological agents. It is strongly advised that researchers wear a laboratory coat when working with hazardous substances. In some cases laboratory supervisors may identify situations where the use of lab coats or more protective apparel is mandatory. Particularly hazardous substances (PHSs) is a term used by OSHA to refer to select carcinogens, reproductive toxins, and substances with a high degree of acute toxicity. More information on PHSs is provided in the CHP template. Certain biological agents refers to agents at Biosafety Level 2 or greater risk level and bloodborne pathogens or other potentially infectious materials such as human blood or body fluids. In general, protective clothing, including lab coats, should not be used as a substitute for engineering controls such as a fume hood, a glove box, process enclosure, etc., or as a substitute for good work practices and personal hygiene. It may also be necessary to supplement lab coat use with additional protective clothing, for example, a rubber apron for handling large quantities of corrosives or hydrofluoric acid. Lab coats: Provide protection of skin and personal clothing from incidental contact Prevent the spread of contamination outside the lab (provided they are not worn outside the lab) Provide a removable barrier in the event of an incident involving a spill or splash of hazardous substances Lab coats are not designed to be the equivalent of chemical protection suits for major chemical handling or emergencies. With the exception of a splash resistance requirement under the OSHA bloodborne pathogen standard, there are no specific requirements in standards or guidelines for the type of protection that a lab coat is to provide. What this means is that: Lab coats are not tested for typical conditions that might be encountered in a research lab with respect to chemical use, or combined research activities. There is little or no information provided by manufacturers or distributors about the capability of a lab coat for a combination of hazards. A coat that is flame resistant, such as treated cotton, may not be chemical resistant or acid resistant. A coat that is advertised as flame resistant has not been tested with criteria involving flammable chemicals on the coat. The term flame resistant refers to the characteristic of a fabric that causes it not to burn in air. The testing criteria involves applying an open flame to the bottom edge of a strip of fabric in a test chamber for 12 seconds and then looking at char length, after flame, and after glow, testing the self extinguishing properties of the fabric. The flame resistance test criteria were intended to simulate circumstances of a flash fire, or electric arc flash, not a chemical fire. Selection. With the limitations above in mind, lab coats are made of different materials, and it is important to select a coat of appropriate material for the types of hazards in the lab. The first step in this selection process is to determine the types of hazards that exist in your lab and the reasons for the lab coats. The CHP Template contains a lab specific SOP form that can be used for assessing the hazards. Another assessment tool is available at: http://web.mit.edu/environment/pdf/ppe_form.pdf Some questions to consider are the following: Does your lab work primarily with chemicals, biological agents, radioisotopes, or a mix of things? Are there large quantities of flammable materials (>10 gallons) or pyrophoric materials used in the open outside a glove box? Are there open flames or hot processes along with a significant amount of flammables? How are hazardous chemicals used and what engineering controls are available, e.g. a fume hood or glove box? Is there a significant risk of splash or splatter for the tasks being done? What is the toxicity of chemicals used? Is there a concern of inadvertent spread of contamination? Once you determine hazards, you can review information on some typical lab coat materials in the Lab Coat Table at the end of this document and determine options for your lab. One coat may not work for all lab operations.
  • 2. Some people may want to provide a basic Poly/Cotton blend coat for most operations, but have available lab coats of treated cotton or Nomex for work involving pyrophoric materials, extremely flammable chemicals, or large quantities of flammable chemicals. If chemical splash is also a concern, use of rubber apron over the flame resistant lab coat might be an option for these circumstances. There are also options for reusable, limited use, or disposable one time use lab coats. There are options for button front or snap front coats, and for open sleeves or knit sleeves. The table at the end of this document provides information on some typical lab coat materials available, with guidance on use and limitations. As noted above, there is limited criteria for testing lab coat materials with respect to typical lab use scenarios, and some of the information is anecdotal. As more information becomes available, this table will be updated. Lab Coat Use. An appropriate size should be selected. Lab coats are available in small, medium, large or extra large. Some lab coat services also offer custom sizes (e.g., extra long sleeves, tall, or womans fit). Lab coats should be worn with sleeves down and fully buttoned. Wear lab coats only when in the lab or work area. Lab coats should be removed when leaving the lab/work area to go home, to lunch, to the restroom, or meetings in conference rooms, etc. Cleaning. Non-disposable lab coats should be cleaned routinely, by use of a laundry service or work area washers and dryers. Frequency of cleaning will depend on the amount of use and contamination. Information on laundry services available is at the end of this document. Usually these companies provide the lab coats as part of their laundry service, though in some cases, you can arrange for occasional cleaning. Personnel should not be laundering lab coats at home. EHS is investigating the feasibility of a centralized service. Emergency spill or splash. In the event of a significant spill of a hazardous material on the lab coat, it should be immediately removed. If skin or personal clothing is impacted, it will be necessary to proceed to an emergency shower. Any contaminated clothing should also be removed. Guidance should be sought from EHS about whether the coat and clothing should be cleaned or discarded as hazardous waste. Emergency fire. The action will depend on circumstances of the fire. If only the lab coat is on fire, remove it, leave area, and call 100 or activate fire alarm. If lab coat and clothing are on fire, shout for help then stop, drop, and roll; or proceed to an emergency shower (if close by) to extinguish fire. If the area is on fire, leave area, closing doors as you leave. Activate fire alarm or call 100. Seek follow-up medical attention. Laundry service information. Most area laundry services routinely provide and launder poly/cotton coats (80/20 or 65/35) with a per coat charge for weekly service. (For a chemical research lab, the 65/35 may be preferable). Laundry services also often provide 100% cotton coats, but the charge per coat is greater for these. It may be possible to arrange for laundering other types of coats, such as flame resistant coats. You will need to work with the provider for specific arrangements, but the two companies below have some flexibility for working to provide a service that meets your needs. The vendors below provide services to other labs and have procedures for processing coats based on type of contamination expected. In negotiating with a vendor, you should be sure they understand the possible contamination that may be on the lab coat. Do not use a local dry cleaner as they generally are not familiar with proper handling of potentially contaminated items. 1. Cintas, Chelmsford, MA. Contact: Chris Angelo ((203)901-3423) 65/35% Poly/cotton and 80/20% Poly/cotton options. Weekly service, 40cents per coat. Cintas Uniform has a line of Fire Resistant clothing and arrangements could be made for purchase or lease of fire resistant lab coats and a cleaning service for them. 2. Uni First Contact: John Dzindolet ((888)-427-2806, ext. 121)) 80/20 poly/cotton (Type coat normally provided as a service) 65/35 poly/cotton and 100% cotton also available.Can provide Nomex lab coats, and is working with other schools to provide 80/20, with a few Nomex coats for special applications as part of rental service that includes laundering. 3. Falvey Linen Supply : http://www.falveylinen.com/index.htm
  • 3. Lab Coat Information Table Material/Source Splash Resistance/Chemic al Resistance Flame Resistance Comfort Uses/Comments Non-disposable Polyester/Cotton Blend 80/20 or 65/35 or 40 /60 common. (recommend at least 65%/35% for chemical research lab setting.) (Available from VWR stockroom or ECAT, or from laundry service companies) Yes, splash resistant. Unknown chemical resistance. Anecdotally, better for work with acids than cotton. No. Coats with more cotton will burn less readily. Lightweigh t breathable . The more cotton, the more breathable . Good for clinical settings (hospitals, clinical labs) and labs handling biological materials and small amounts of flammables.) 100%Cotton (Available from VWR stockroom in 56 and through ECAT and laundry service companies listed.) Not splash resistant or fluid proof. Degraded by acids. Anecdotally, more resistant to solvents. No. Burns less readily than poly/cotton blends Lightweigh t breathable Good for labs where acid handling is limited and splash resistance is not a concern, and there is some work with flammables, heat and flame. Should supplement with an apron for acid handling. Cotton treated with flame retardant. Not available from VWR. Sources: Lab Safety Supply Company, Workuniform.com Not necessarily fluid proof. Degraded by acids. More resistant to solvents. Not generally tested for chemical resistance. Yes No information . Appropriate for lab settings where there may be a significant fire hazard, with an understanding of the limitations of the testing criteria for flame resistance (see background). May be appropriate to supplement with an apron for acid handling. More costly. Will not lose flame resistance with laundering over typical use life of coat. No bleach should be used by the laundry service. Dupont Nomex Not available from VWR. Available from Lab Safety Supply, Fisher Scientific and Workuniform.com Unknown splash and chemical resistance. There is a claim for chemical resistance, including acids, alkalis, and most solvents, but specific testing information could not be found. Yes Breathable . Expensive. Flame resistance is maintained even with laundering, provided bleach is not used. Good for settings where there may be an arc flash or flash fire. Used in petrochemical industry. Polypropylene lab coat. Available from VWR through ECAT. No No Yes Intended for protection from dirt, grime, dry particulates in relatively non-hazardous environment such as animal handling and clean rooms. Burns readily. VWR Microbreathe Lab Coat (Disposable available from VWR through ECAT) Splash resistant for blood and body fluids and chemicals. No Yes For clinical and biological lab settings, and some chemical labs. Snap front, so can be readily removed. Not good for settings with significant fire hazard.