11. 東アジア開発途上国における
環境配慮型公共交通導入以降の分析
11
? Population increasing
? Motorcycle spreading
? Progress of motorization
? Road capacity problem
Urgency of traffic problems in
Southeast Asia
CO2 emission/air pollution by traffic are ones of the
most important problems for global environment
Providing new public transport
is one possible approach
Examples in Asian megacities
? Jakarta (Indonesia)
? Bangkok (Thailand)
12. イント?ネシア調査
Study area
Malang (Indonesia)
? 110.06km2, 820,000 citizens
(2010)
? Tourist city / Academic city
? Over 15 universities
? Approx. 150,000 students
? Travel mode
? Major mode: Motorcycles (MC)
? Paratransit “Angkot” is major
inner-city public transportation
12
(source: Google Maps)
(source: Prof. Wicaksono (Brawijaya Univ.))
14. 潜在クラス選択モデル
14
“Latent class choice (LCC) model”
to capture heterogeneity of respondent “classes”
? Respondents in different classes have different tastes for mode choice
(= Different classes have different utility functions for each alternative)
? Analysts cannot observe which class each respondent belongs to
(Classification is latent for analysts)
In LCC model…
Class 1
Class 2
? ?1
? ?2
? ??|1 = ?
???????|1 = ?
????|1 = ?
? ??|2 = ?
???????|2 = ?
????|2 = ?
Different
??? =
?=1
?
? ?? ???|?
i: choice; n:individual; c:class
? ??: Class membership
probability
???|?: Mode choice probability
(Multinomial Logit)
???
?
???
21. 4
3
21
21
Middleware server
Database
GIS database
(DRM2403)
Traffic information
database
(Honda probe data)
Heavy computing units (Amazon EC2)
Creation of graph
? ? ? , ? ? ? , ? ?
Generate Hyperpath
Network data
(node, link)
Statistical
link travel time
Light computing units
(Android e.g. Nexus)
Sakura Rental Server
Show Hyperpath
and conduct
route guidance
Set origin and
destination
Drive with repeating
route choice
Google Maps
Google APIs
Arrive at
destination
Recording of
driving log
Route finding server
Client application
Drivers
Hyperpathに基づく遅延リスク最小化経路誘導システム
22. 22
Behavior avoiding congestion
Very
congested…
? Drive by repeating link choices
to avoid the risk of delay based
on:
? Probability of link
recommendation
? Traffic situation
?
?
Behavior based on traffic signal
Easily
turn right !
23. 23
? HP departing at 7:30 ? SP departing at 7:30
HP
SP
アプリ“Hypernav”の開発と
フィールト?実験
25. 自然災害リスクと国の経済成長
25
National land structure and disaster risk
Japan faces the higher risk of natural disasters
Tokyo metropolitan area
? 3.6% of the land area
? 27.5% of the population
? 31.9% of GDP
Centralized national land
structure improves productivity
(agglomeration economy)
Centralized national land structure
(一極集中構造) may lead to
higher disaster vulnerability
Magni-
tude
Capital loss
(billion yen)
Great Hanshin-Awaji
Earthquake
M7.3 9,900
Great East Japan
Earthquake
M9.0
16,000
~ 25,000
Tokyo Metropolitan
Earthquake
M7.3
66,000
(estimation)
Examine the relationship between the disaster vulnerability and the
national land structure (centralized or decentralized)
Trade-off
26. 26
Economic system at time
Population ??
Capital ??,?
Disaster
??,?
Capital ? ??
?,?
Representative
household
Goods
Region ?
Infrastructure ??
Infrastructure ? ??
?Production
technology
Time ? ? 1
Consumption ??,?
Investment ??,?
Capital ??,?+1
Transfer ????,?
Infrastructure
??+1
Production
technology
Investment ? ?,?
??,?
??
? ??
?,?
??,?
? ?,?
??,?
??,?
??,?+1
??,?
??,?
Other
Regions
Time ? ? 1
Time ? ? 1
27. 数値シミュレーション
? In terms of avoiding catastrophic impact,
decentralized national land structure is
desirable.
Same disaster risk in all the regions
0.5
0.5
A disaster in region 1
A disaster in region 2
Decentralization has the effects of
decreasing disaster vulnerability.
? At the 0.5 population share of region 1,
nation has the highest social welfare.
Region 1 Region 2
Same risk
Maximum value
of vulnerability
All the regions have same probability
of disaster and ratio of capital loss
28. ? 問題意識「電力自由化は,非平常時の安定供給を阻害するのでは?」
我が国の電力供給ネットワークを模擬したシミュレーション分析
Maximum
power
output of
the plants
[1,000
kWh]
Importance Value of the largest plants in each region
Owned by
(General
Electric
Utility)
Type of
generating of
the plants
Before the deregulation After the deregulation
Hokkaido Coal-fired 1650 0.01013 0.01498
Tohoku LNG-fired 5202.8 0.00933 0.05305
Tokyo Oil-fired 5204 0.00012 0.00548
Chubu LNG-fired 4802 0.00713 0.01325
Hokuriku Oil-fired 1500 0.00012 0.00548
Kansai LNG-fired 2173 0.01396 0.00986
Chugoku LNG-fired 1400 0.00662 0.00802
Shikoku Oil-fired 1448 0.00012 0.00548
Kyusyu LNG-fired 2295 0.00787 0.00987
Okinawa LNG-fired 502 0.00269 0.00575
電力供給ネットワークの脆弱性分析
28
* All atomic power plants are not included