This document provides an overview of industrial cooling systems and cooling water chemistry. It discusses the three main types of cooling systems: once-through, closed-loop, and open-recirculating. Open-recirculating systems use cooling towers to transfer heat to the atmosphere through evaporation. The document covers topics like heat transfer mechanisms, cooling tower design, cycles of concentration, deposition, corrosion, and microbiological fouling. It also summarizes the key factors that affect scaling and how cooling water chemistry is used to control scaling and other issues in industrial cooling systems.
2. Outline
TypesofCoolingSystems
Oncethrough
ClosedLoop
Openrecirculating
Cooling TowersCoolingTowers
PhysicalDesign
HeatTransfer
C li C t ti R ti CyclingorConcentrationRatio
IssuesandTreatment
Depositionp
Corrosion
MicrobiologicalFouling
2
WhatCoolingtopicswouldYOUliketodiscusstoday?WhatCoolingtopicswouldYOUliketodiscusstoday?
Property of ChemTreat, Inc. Do not copy without permission.
3. CoolingWaterSystems
R H t (BTU )
Two Mechanisms:
RemoveHeat (BTUs)
1.TemperatureChangeSensibleHeat
Heatcapacity Cp =1BTU/lboF (1cal/goC)p y p g
Heattransferred Q=mxCp x(Th Tc)
2.Evaporationp
LatentHeat LH=1,000BTU/lb (556cal/g)
Heattransferred Q=mxLH
Howdoindustrialcoolingsystemsusetheseproperties?Howdoindustrialcoolingsystemsusetheseproperties?
3
Property of ChemTreat, Inc. Do not copy without permission.
4. Once ThroughSystem
Cooling Water
g y
Cooling Water
Supply
Process
Heat Load
Cooling Water Discharge
or to Mill Water
Q(Btu/hr.)=Q(Btu/hr.)=mCpmCp(Tout(Tout Tin)=gpmx500(ToutTin)=gpmx500(Tout Tin)Tin)
4
Property of ChemTreat, Inc. Do not copy without permission.
5. ClosedRecirculatingSystem
To HeatTo Heat
Sink
Heat
E h
Process
Exchanger
Heat
Load
Makeup
From
Heat
Surge
Sink
Surge
Tank
Whatplantheatexchangersuseclosedcooling?Whatplantheatexchangersuseclosedcooling?
5
Property of ChemTreat, Inc. Do not copy without permission.
7. Cooling System ComparisonCoolingSystemComparison
OnceThrough ClosedLoop CoolingTower
Pro Con Pro Con Pro Con
Lowestcapitalcost Poorchemistry Excellentchemistry Highest sinktemp Smaller water Consumeswaterp y
control
y
control
g p
source(~100x) (evaporation)
Lowestoperating
cost
Large sourceand
water
requirements
Corrosionproduct
accumulation
Fairlylowtemp
sink(wetbulb)
Higheroperating
cost(fan&pump)
L i k Th l di h L h l C lLowesttempsink Thermal discharge Lessthermal
dischargetowater
Concentratessalts
Supplieshotwater Fishandplankton
entrainment
Goodchemistry
control
Saltdrift
Aquatic Weeds & Potential to reduce AirborneAquatic Weeds&
Debris
Potential toreduce
wastewatervolume
Airborne
pathogens
7
Property of ChemTreat, Inc. Do not copy without permission.
10. Cooling Tower BalancesCoolingTowerBalances
Solving the Cooling Tower Equation
Mass (Water and Salt Concentration)Mass(WaterandSaltConcentration)
Makeup=Evaporation+Blowdown
Blowdown = BD intentional + Drift + Windage + Leaksg
Energy(Heat)
Q = QQin =Qout
Howdowecalculatetheenergybalance?Howdowecalculatetheenergybalance?
10
Property of ChemTreat, Inc. Do not copy without permission.
11. Energy(Heat)Balances
Qin =RR*Cp*(TR TS)
Cp~1.00Btu/lbFp /
Qout =E*LH/f
LH~1,000Btu/lb
E=[RR*1.00*(TR TS)*f]/1,000
E
BD
TR
T1 T2
E
Vs. TwbTdb
RH
TS
RR
Property of ChemTreat, Inc. Do not copy without permission.
11
Whatisf?Whatisf?
12. EvaporationFactor(f)
20% RH
1.1
actor
1 0 20% RH
40% RH
60% RH
80% RH
100% RH
tionFa
1.0
0.9
aporat
0.7
0.8
20 30 40 50 60 70 80
Eva
0.5
0.6
20 30 40 50 60 70 80
(属F)Wet Bulb Temperature
Howdoweputthisinfotogetherintoanequation?Howdoweputthisinfotogetherintoanequation?
12
Property of ChemTreat, Inc. Do not copy without permission.
13. CombinedEnergyandMassBalancegy
E=(RR*(TR TS)*f)/1,000
MU = BD + EMU=BD+E
C=MU/BD(also,C=ConcBD/ConcMU )
C=(BD+E)/BD
BD BD*C=BD+E
BD*C BD=E
BD*(C1)=E
BD
E
BD=E/(C 1)
RR
TR
MU
RRTS
Ifweincrease(decrease)cycles,whatstheimpactonMU&BD?Ifweincrease(decrease)cycles,whatstheimpactonMU&BD?
13
Property of ChemTreat, Inc. Do not copy without permission.
15. Definitions Approach&Range
107属FHotReturnH2O
73属F Wet Bulb Air
90属FAir DryBulb
84.5属FColdSumpH2O
73 FWetBulbAir
45%Rel.Humidity
Approach Temperature = 11 5属F Cooling Range (T) = 22 5属F
The wetbulbtemperature isthelowesttemperaturetowhichwatercan
becooledbyevaporation
ApproachTemperature=11.5 F CoolingRange(T)=22.5 F
Thedifferencebetweenthecoldsumptemperatureandthewetbulb
temperatureiscalledtheapproach
Thetemperaturedifferencebetweenthehotreturnwaterandthecold
t i f d t th li (D lt T)
15
sumpwaterisreferredtoasthecoolingrange (DeltaT)
WhatwouldhappenWhatwouldhappentotoefficiencyifwehadtoefficiencyifwehadtouseDryCooling?useDryCooling?
Property of ChemTreat, Inc. Do not copy without permission.
16. CoolingTowerDesigns
CrossFlow Induced Draft CounterFlow Induced DraftCrossFlowInducedDraft Counter FlowInducedDraft
Drift
li i
Air
Drift
Eliminators
Eliminators
Air Louvers
16
Property of ChemTreat, Inc. Do not copy without permission.
AirflowdirectionisCountertoWaterflowAirflowdirectionisCountertoWaterflowAirflowdirectionAcrosstheWaterflowAirflowdirectionAcrosstheWaterflow
17. CoolingTowerFill
S l h Fill Fil Fill
WATER
SplashFill FilmFill
WETTED
SURFACE
AIR
17
Property of ChemTreat, Inc. Do not copy without permission.
TightPassagesTightPassages MoreEfficientMoreEfficientOpenDesignOpenDesign LessPronetoFoulingLessPronetoFouling
18. Cooling System ReviewCoolingSystemReview
What are the 3 general types of cooling systems?Whatarethe3generaltypesofcoolingsystems?
Howdocoolingtowersremoveheat?
What is meant by Cycles of Concentration?WhatismeantbyCyclesofConcentration?
WhatcanhappenifCyclesgettoohigh?
TooLow?
WhyisEvaporativecoolingmoreefficientthanDry?
What is Approach to the Wet Bulb temperatureWhatis ApproachtotheWetBulbtemperature
Whatishighefficiencyfilmfill?
Whatconcernshouldwehave?
18
Property of ChemTreat, Inc. Do not copy without permission.
20. FundamentalCoolingTriangleg g
Corrosion
Control
BioFoulingDeposition
How is each element addressed at your plant?How is each element addressed at your plant?
20
Howiseachelementaddressedatyourplant?Howiseachelementaddressedatyourplant?
Howwellisitworking?Howwellisitworking?
Property of ChemTreat, Inc. Do not copy without permission.
21. Depositionp
What is it?Whatisit?
Whyshouldwecare?
How is it measured?Howisitmeasured?
Whatfactorseffectit?
How is it controlled at Howisitcontrolledat
yourmill?
How well is it working? Howwellisitworking?
21
Property of ChemTreat, Inc. Do not copy without permission.
22. TypesofDepositionyp p
Scaling
Mi l l Mineralscale
Fouling
S d d tt Suspendedmatter
Transientcorrosion
productsproducts
ProcessContamination
Lubricants,millscale,glycol,
th lid & fl idotherprocesssolids&fluids
22
Howdoesscaleform?Howdoesscaleform?
Property of ChemTreat, Inc. Do not copy without permission.
23. Scaling EvaporationOverACoolingTower
C Th Mi lConcentratesTheMinerals
Only the pure water (H2O) is lost by evaporation
23
Onlythepurewater(H2O)islostbyevaporation
Whatfactorsaffectscaleformation?Whatfactorsaffectscaleformation?
Property of ChemTreat, Inc. Do not copy without permission.
24. ScaleFormation
Functionof:
CoolingTowerpHChemistrySimplified
H2OH+ +OH
H+ = Acid = Low pH
ConcentrationofIons
pH
H+ =Acid=LowpH
OH =Caustic=HighpH
Evaporationconcentratesminerals:
Temperature
Velocity
HCO3
(bicarbonate)OH +CO2
pHincreases
HCO3
+OH H2O+CO3
=(carbonate)
Ca++ + CO3
= = CaCO3
PresenceofSolid
SeedingMaterial
Ca +CO3 =CaCO3
Calciumcarbonatescale
Addsulfuricacid:
H2SO4 +2OH= H2O+SO4
=
Ca++ +SO4
= CaSO4?
Calciumsulfatescale(gypsum)
More soluble than CaCO3, but
24
Whatdowemeanbyinversesolubility?Whatdowemeanbyinversesolubility?
Property of ChemTreat, Inc. Do not copy without permission.
MoresolublethanCaCO3,but
26. CalciumCarbonateIsInverselySoluble
With Temperature (and pH)WithTemperature(andpH)
(Process)(Process)
HEATHEAT
CO3
Ca+ Ca+ Ca+CO3 CO3 CO3
Ca+ Ca+ Ca+CO3 CO3
Ca+
C
CO3
Ca+
Ca+ Ca+ Ca+CO3 CO3 CO3
Ca+
CO3
Ca+ Ca+ Ca+CO3 CO3
METALSURFACEMETALSURFACE HEATHEAT
(Process)(Process)
26
(Process)(Process)
Property of ChemTreat, Inc. Do not copy without permission.
27. CommonMineralScalesCo o e a Sca es
CaCO3 CalciumCarbonate
CaSO4 CalciumSulfate
Ca3(PO4)2 CalciumPhosphate
CaF2 CalciumFluoride
ZnPO4 ZincPhosphate4
Zn(OH)2 ZincHydroxide
Fe2(PO4)3 IronPhosphate
Fe2O3 Iron OxideFe2O3 IronOxide
MnO2 ManganeseDioxide
SiO2 Silica
Mg Si O (OH) Magnesium Silicate Mg3Si4O10(OH)2 MagnesiumSilicate
(AlO)2SiO3 AluminumSilicate
CaMgSi2O6 CalciumMagnesiumSilicate
27
Whatisthemostcommonscale?Whatisthemostcommonscale?
Property of ChemTreat, Inc. Do not copy without permission.
28. CaCO3Indices
LSI LangelierSaturationIndex
LSI=pH pHs
pH=ActualpH
pHs =SaturationpH
pHs =functionofCalcium,MAlkalinity,TDS,&Temp.
MAlkalinityortotalalkalinityisanapproximationofthe
bicarbonate concentrationbicarbonateconcentration
USFederalRegisterAug27,1980,p.57338Vol 45(No.168)
InterpretingLSI
Negative calciumcarbonateScaleisNotPossibleg
Positive calciumcarbonateScaleisPossible
>0.5 ScaleisLikelywithouttreatment
>1.0 ScaleisProbablewithouttreatment
Typically,operate<2.5withscaleinhibitor
3.0isthemax.recommendedwithheroictreatment
h h h b f h d ?h h h b f h d ?Whatisthechemistrybasisforthisindex?Whatisthechemistrybasisforthisindex?
Property of ChemTreat, Inc. Do not copy without permission.
28
29. PredictingMineralScalingg g
Proprietary software HH
Safe,
NoTreatment
Needs
Treatment
DoYou
FeelLucky?
OKwith
Treatment
6 7 8 9
Proprietarysoftware
Writeyourown
Workwithcooperatingchemical
orconsultingcompany
pHpH
LSILSI
0.50.00.5 1.0 2.0 2.5 3.0
Commerciallyavailablesoftware
ConsiderFrenchCreekSoftware
WaterCycle (Cooling)
H d RO D
LSILSI
SiOSiO
100 150 200 300
HydRODose
DownHole SAT
PHREEQE
WATEQ4F
SiOSiO22
CaH x SOCaH x SO
1x106 5x106 10x106 40x106
Q
Manufacturerspecs.
Firstresource
Whenallelsefails,readtheinstructions
T d b i
CaHxSOCaHxSO44
MgH x SiOMgH x SiO
pH7 400,000 pH8 100,000pH9 20,000
Property of ChemTreat, Inc. Do not copy without permission.
29
Tendtobeconservative MgHxSiOMgHxSiO22
31. ChemicallyControllingMineralScales
Without
With
Without
Inhibitor
Inhibitor
ThresholdInhibition
Adsorbontogrowingcrystalembryo
Distort orderly growth patternDistortorderlygrowthpattern
Encouragedissolutionoftheembryosintoions
ContrasttoChelation
Phosphonates(OrganicPhosphates)
PBTC,HEDP,AMP,DETPMPA,andothers
Generally most effective but are affected by iron and can be degraded by oxidizers and UV light Generallymosteffective,butareaffectedbyironandcanbedegradedbyoxidizersandUVlight
Polyphosphates(InorganicPhosphates)
Hexametaphosphateprimarily
HydrolyzefairlyrapidlytosimpleorthoPO4
Polymers
Polymaleate,polyacrylate,polymers,copolymers,oligomers
Lesseffective,butmorestableandnonP
Alsousedincombinationwithphosphonatestodisperseanddistortcrystalnuclei 31
Property of ChemTreat, Inc. Do not copy without permission.
33. Controlling Fouling By Suspended SolidsControllingFoulingBySuspendedSolids
Solidparticlesenterthecoolingsystemp g y
Makeupwater
Air airbornedust
Process contamination oils iron glycol Processcontamination oils,iron,glycol
Mechanicalcontrol
Removesuspendedsolidsfrommakeupwaterusingappropriate
pretreatment(clarifiers,softeners,andfilters)
Installsidestream orfullflowfilters
Redesignforhigherwatervelocityg g y
Feedchemicaldispersantsand/orsurfactantstokeep
theminsuspensionandpreventthemfromdepositing
Property of ChemTreat, Inc. Do not copy without permission.
33
34. ChemicalControlofSuspendedSolids
DispersionDispersion
Clay particles naturally have a negative surface charge
Anionic polymeric Dispersants adsorb onto suspended solids
...Reinforcing negative charges
Anionic polymeric Dispersants adsorb onto suspended solids...
Causing them to repel
Whataresomecommondispersants?Whataresomecommondispersants?
Property of ChemTreat, Inc. Do not copy without permission.
34
35. Typical DispersantsTypicalDispersants
Homopolymers
Polyacrylicacid
Homopolymers
PAA,PMA,
Copolymers
SSMA AA/AMPS HPS1 APES t
CH2 CH
n SSMA,AA/AMPS,HPS1,APES,etc.
Terpolymers
HSP,STP
C
OO
n
Quadrasperse速
USPatent6,645,384
OO
Charged carboxylic acid groupChargedcarboxylicacidgroup
35
Property of ChemTreat, Inc. Do not copy without permission.
36. Copolymer Vs.Quadrasperse速
Cooler #3 High Temp Heat Exchanger
Gulf Coast Chemical Plant - HX Flow with
AA/AMPS Vs ChemTreat Quadrasperse
Cooler#3,HighTemp.HeatExchanger
AA/AMPS Vs. ChemTreat Quadrasperse
5800
6000
w
Copolymer (10 ppm) Quad Polymer (8 ppm)
5400
5600
5800
aterFlow
m)
4800
5000
5200
oolingW
(gpm
4600
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
Week
Co
Cooling water flow top Cooling water flow bottom
36
Property of ChemTreat, Inc. Do not copy without permission.
39. Corrosion
Whatisit?
Whyshouldwecare?
Howisitmeasured?
Whatfactorseffectit?
Howisitcontrolled?
Howiscorrosion
controlledatyourplant?
Howwellisitworking?
39
Property of ChemTreat, Inc. Do not copy without permission.
40. QuantityofCorrosionProductsGenerated
in 2 000 Yards Pipingin2,000YardsPiping
DecreasesflowDecreasesflow ForeignmaterialinpipeForeignmaterialinpipe
Rambie,D.
PaperTradeJournal,1984
IncreasespressuredropIncreasespressuredrop IncreasespumpingcostIncreasespumpingcost
BlockscriticalspraynozzlesBlockscriticalspraynozzles
40
Property of ChemTreat, Inc. Do not copy without permission.
42. Corrosion is an Electrochemical ReactionCorrosionisanElectrochemicalReaction
WATER (ELECTROLYTE)
2OH
Fe(OH)2
CircuitCompleted
O
2
Fe++
ELECTRON
2OH-
O2
Fe2O3(Rust)
O2
2e
ANODE
ELECTRON
FLOW
CATHODE
(MetalLoss)
CATHODICREACTIONS
CHEMICAL REDUCTION
Metal(Conductor)
ANODICREACTION
CHEMICAL OXIDATION CHEMICALREDUCTION
遜O2 +H2O+2e 2OH
LowpHonly:2H+ +2e H2 42
CHEMICALOXIDATION
Fe0 Fe++ +2e
Property of ChemTreat, Inc. Do not copy without permission.
Whatfactorsaffectcorrosion?Whatfactorsaffectcorrosion?
43. Factors Affecting CorrosionFactorsAffectingCorrosion
Conductivity
onRate
pH
nRate
4 104 pH 104 10
Corrosio
Corrosion
4 104 pH 104 10
Dissolved Solids
(Conductivity)
C
90 F
120 F
90 F
120 F
90 F
120 F
90 F
120 F
Temp & Oxygen
sionRate
48 F
Temp or ppm Oxygen
48 F48 F48 F
Corros
43
Aretheredifferentformsofcorrosion?Aretheredifferentformsofcorrosion?
Property of ChemTreat, Inc. Do not copy without permission.
44. TypesofCorrosionyp
Uniform
Localized (pitting)Localized( pitting )
Crevicecorrosion
Concentrationcell
U d d it i Underdepositcorrosion
Stresscorrosioncracking
MicrobiologicallyInfluenced(MIC)
Erosion
Dealloying
Thermal cellThermalcell
Straycurrent
Galvanic(dissimilarmetals)
44
Property of ChemTreat, Inc. Do not copy without permission.
45. Uniform CorrosionUniformCorrosion
L t D i LeastDamaging
CathodicandAnodicSites
ContinuouslyChanging
Even Metal LossEvenMetalLoss
LongTimeBeforeFailure
11mpy
36dayexposuretime
Whathappensiftheanodedoesnotshiftrandomly?Whathappensiftheanodedoesnotshiftrandomly?
45
Property of ChemTreat, Inc. Do not copy without permission.
46. LocalizedCorrosion
VeryDetrimental
SmallAmountofMetalLoss
ShortTimeBeforeFailure
Classicpittingcorrosion
Pitting,strictlydefined,occursonafullyexposedsurfacePitting,strictlydefined,occursonafullyexposedsurface
46
Property of ChemTreat, Inc. Do not copy without permission.
47. AnatomyOfAPit PitHappens
2eWATER (ELECTROLYTE)
Cl OHOH
OH
OH
Cl
Cl
Cl
OH
OH
Cl
Cl
2 ( )
H+ H+ H+ H+
H+
Metal(Conductor)
Fe+2 +2HOH Fe(OH)2 +2H+
Rusttuberclebehaveslikeasemipermeablemembrane
Chloride ions are smaller and diffuse faster than hydroxide ions
47
Property of ChemTreat, Inc. Do not copy without permission.
Chlorideionsaresmalleranddiffusefasterthanhydroxideions
Pitbecomesacidicandconcentratedinchlorides
Onceapitforms,themetalisverydifficulttorepassivate
48. GalvanicCorrosion
Galvanic SeriesGalvanicSeries
CCoorrrrooddeedd EEnndd
((AAccttiivvee))
MMaaggnneessiiuumm CCooppppeerr
ZZiinncc BBrroonnzzeess
AAll ii CC NNii kk llAAlluummiinnuumm CCooppppeerr--NNiicckkeell
SStteeeell TTiittaanniiuumm
IIrroonn MMoonneell
330044 SSSS ((AAccttiivvee)) 330044 SSSS ((PPaassssiivvee))330044 SSSS ((AAccttiivvee)) 330044 SSSS ((PPaassssiivvee))
331166 SSSS ((AAccttiivvee)) 331166 SSSS ((PPaassssiivvee))
LLeeaadd SSiillvveerr
TTiinn GGrraapphhiitteepp
BBrraasssseess PPrrootteecctteedd EEnndd
((MMoosstt NNoobbllee))
48
Property of ChemTreat, Inc. Do not copy without permission.
49. StainlessSteelCorrosionBehavior
ActivePassiveAlloy
Chromiuminthealloypromotestheformationofa
protectivehydrousironoxidefilmonthesurface
Pits rapidly if a portion of the surface becomes activePitsrapidlyifaportionofthesurfacebecomesactive
Requirementformaintainingpassivity
Oxygen must be continually replenished at the surfaceOxygenmustbecontinuallyreplenishedatthesurface
Avoid:
Deposits,especiallymanganese
Stagnantconditions(extendedwetlayup)
Highchlorides
Forstainlesssteel,thedepositcontrolprogramisyourcorrosioncontrolprogram!Forstainlesssteel,thedepositcontrolprogramisyourcorrosioncontrolprogram!
49
Property of ChemTreat, Inc. Do not copy without permission.
50. Stainless Steel CorrosionStainlessSteelCorrosion
GeneralCorrosion
d Acids
Reducingenvironment
Stress Corrosion Cracking StressCorrosionCracking
Chlorides
High temperature (> ~140 属F or 60 属C)Hightemperature(> 140 For60 C)
TensileStress(ResidualorApplied)
Pitting CorrosionPittingCorrosion
Chlorides
Crevices
WhatsaSafeChlorideLevel?WhatsaSafeChlorideLevel?
50
Property of ChemTreat, Inc. Do not copy without permission.