ݺߣ

ݺߣShare a Scribd company logo
Tema 3(9-10): Aplicacions de la derivada
1. Estudi i representació de funcions
2. Problemes d'optimització
3. Teorema de Rolle
4. Regla de l'Hôpital per a resoldre indeterminacions 0/0
1. Estudi i representació de funcions
Repàs apartat 5. del tema 1a) Domini
Eix x: Resoldre l'equació f (x) = 0
b) Punts de tall amb els eixos
Eix y: Càlcul de f (0)
Verticals en x = c quan:
c) Asímptotes
Horitzontals en y = k quan:
lim
x →c
f (x)=∞
lim
x →±∞
f (x)=k
Obliqües en y = mx + n quan: lim
x →∞
f (x)
x
=m=0
lim
x →∞
[ f (x)−mx]=n
Si f'(a) > 0 creix, si f'(a) < 0 decreix
d) Monotonia (creix o decreix)
e) Curvatura (còncau o convex)
Si f'(a) = 0 màx o mín Si f''(a) < 0 Màxim
Si f''(a) > 0 Mínim
Si f''(a) > 0 és còncava, si f''(a) < 0 és convexa
Si f''(a) = 0 és punt d'inflexió
Exemples: Polinòmica, Racional, Radical, Exponencial, Logarítmica, a trossos
p.247: 20, 21, 22, 23, 24, 26, 27, 28, 30 i 31 [una cada un, full a part]
2. Problemes d'optimització
Objectiu: interpretar les funcions donades / construïdes
a) Problemes amb la funció donada
1r: Fer derivada
2n: Igualar a 0 (on hi haurà màxim o mínim)
f ' (t)=10−2t
10−2t=0;t=5mesos
3r: Amb derivada 2a mirar si màx o mín
f ' ' (t)=−2
Ex pàg 218: Benefici empresa s'expressa com f(t)=10t-t2
t: temps en mesos
En quin moment és el màxim benefici?
Negatiu, per tant màxim.
El màxim benefici és al cap de 5 mesos p218 E3, 13, 14
b) Problemes en què cal construir la funció
1r: Expressar funció
2n: Utilitzar condició per tenir només una variable (f(x))
f (x , y)=x2
+2y
x· y=125
3r: Seguir amb el procés anterior
f ' (x)=2x−
250
x2
Ex pàg 219: Trobar 2 nombres el producte dels quals és 125, de tal
manera que el valor del quadrat del primer més el doble del segon
sigui mínim
condició
Els nombres són el 5 i el 25.
p219 E4, 15, 16, 67-82
funció
y=
125
x
f (x)=x
2
+2·
125
x
2x−
250
x
2
=0; x=5
f ' ' (x)=2−
500
x3
f ' ' (5)=6>0
3. Teorema de Rolle
Si f(x) és contínua en l'interval [a,b], derivable en tot l'interval (a,b),
i f(a) = f(b), podem afirmar que dins de l'interval hi ha almenys un
punt c pel qual f'(c) = 0, és a dir, un punt màxim o mínim.
Michel Rolle
"per força la funció ha de fer un retorn"
p220 Ex, 17, 18, 83, 84, 85, 87, 88
4. Regla de l'Hôpital
Sempre i quan f(c) = 0, g(c) = 0, i g'(c) # 0.
p223 Altre ex, 23, 24, 104, 105, 106, 107
lim
x →c
f (x)
g (x)
=lim
x→c
f ' (x)
g ' (x)
lim
x →−1
x2
+4x+3
x
3
+1
=
0
0
Exemple:
lim
x →−1
x2
+4x+3
x
3
+1
= lim
x →−1
2x+4
3x
2
=
2
3
f ' (x)=2x+4
g ' (x)=3x2

More Related Content

2n Batxi Tema 3: Aplicacions de la derivada

  • 1. Tema 3(9-10): Aplicacions de la derivada 1. Estudi i representació de funcions 2. Problemes d'optimització 3. Teorema de Rolle 4. Regla de l'Hôpital per a resoldre indeterminacions 0/0
  • 2. 1. Estudi i representació de funcions Repàs apartat 5. del tema 1a) Domini Eix x: Resoldre l'equació f (x) = 0 b) Punts de tall amb els eixos Eix y: Càlcul de f (0) Verticals en x = c quan: c) Asímptotes Horitzontals en y = k quan: lim x →c f (x)=∞ lim x →±∞ f (x)=k Obliqües en y = mx + n quan: lim x →∞ f (x) x =m=0 lim x →∞ [ f (x)−mx]=n
  • 3. Si f'(a) > 0 creix, si f'(a) < 0 decreix d) Monotonia (creix o decreix) e) Curvatura (còncau o convex) Si f'(a) = 0 màx o mín Si f''(a) < 0 Màxim Si f''(a) > 0 Mínim Si f''(a) > 0 és còncava, si f''(a) < 0 és convexa Si f''(a) = 0 és punt d'inflexió Exemples: Polinòmica, Racional, Radical, Exponencial, Logarítmica, a trossos p.247: 20, 21, 22, 23, 24, 26, 27, 28, 30 i 31 [una cada un, full a part]
  • 4. 2. Problemes d'optimització Objectiu: interpretar les funcions donades / construïdes a) Problemes amb la funció donada 1r: Fer derivada 2n: Igualar a 0 (on hi haurà màxim o mínim) f ' (t)=10−2t 10−2t=0;t=5mesos 3r: Amb derivada 2a mirar si màx o mín f ' ' (t)=−2 Ex pàg 218: Benefici empresa s'expressa com f(t)=10t-t2 t: temps en mesos En quin moment és el màxim benefici? Negatiu, per tant màxim. El màxim benefici és al cap de 5 mesos p218 E3, 13, 14
  • 5. b) Problemes en què cal construir la funció 1r: Expressar funció 2n: Utilitzar condició per tenir només una variable (f(x)) f (x , y)=x2 +2y x· y=125 3r: Seguir amb el procés anterior f ' (x)=2x− 250 x2 Ex pàg 219: Trobar 2 nombres el producte dels quals és 125, de tal manera que el valor del quadrat del primer més el doble del segon sigui mínim condició Els nombres són el 5 i el 25. p219 E4, 15, 16, 67-82 funció y= 125 x f (x)=x 2 +2· 125 x 2x− 250 x 2 =0; x=5 f ' ' (x)=2− 500 x3 f ' ' (5)=6>0
  • 6. 3. Teorema de Rolle Si f(x) és contínua en l'interval [a,b], derivable en tot l'interval (a,b), i f(a) = f(b), podem afirmar que dins de l'interval hi ha almenys un punt c pel qual f'(c) = 0, és a dir, un punt màxim o mínim. Michel Rolle "per força la funció ha de fer un retorn" p220 Ex, 17, 18, 83, 84, 85, 87, 88
  • 7. 4. Regla de l'Hôpital Sempre i quan f(c) = 0, g(c) = 0, i g'(c) # 0. p223 Altre ex, 23, 24, 104, 105, 106, 107 lim x →c f (x) g (x) =lim x→c f ' (x) g ' (x) lim x →−1 x2 +4x+3 x 3 +1 = 0 0 Exemple: lim x →−1 x2 +4x+3 x 3 +1 = lim x →−1 2x+4 3x 2 = 2 3 f ' (x)=2x+4 g ' (x)=3x2