1. 2012 中華民國航太學會學術研討會 新竹,中華民國一百零一年十二月十五日
2012 AASRC Conference Hsinchu, December 15, 2012
論文編號:30-18
1
磁流變阻尼器設計法研究
廖揚旭 1
,朱家葆 1
,謝宗翰 1*
,林坤淵 2
1
逢甲大學航太與系統工程學系、台中市 40724 西屯區文華路 100 號
2
超卓股份股份有限公司、台中市工業區 34 路 24 號
摘要
本研究主要為利用有限元素法結合實驗設計 (design of experiment, DOE)與響應曲面法(response
surface methodology, RSM),探討磁流變液阻尼器中活塞各項設計參數對於磁流變液產生的磁通量之影
響。研究結果顯示,利用 CAD 工具將活塞各項設計參數進行關聯後,再透過 CAE 工具進行多組實驗
設計分析,最後,藉由響應曲面的產生可以有效探討各參數的設計變化對於結果影響之相互關係。
關鍵字:磁流變液、阻尼器、實驗設計、響應曲面法
Study on Design Method for Magnetorheological Dampers
Yang-Hsu Liao1
, Chia-Bao Chu1
, Tzong-Hann Shieh1*
, Kun-Yuan Lin
1
Department of Aerospace & Systems Engineering, Feng Chia University
2
C-JAC Industrial Co., Ltd.
Abstract
This present mainly discuss the magnet flux variations of magnetorheological fluid in a magnetorheological
damper. The variations are depended on the design parameters of piston. Finite element method is applied
into electromagnetic analysis, in addition, the combination of design of experiment (DOE) and response
surface methodology (RSM) is for parametric study. The results indicate utilizing CAD tools to connect each
design parameter then doing DOE analyses and producing response surfaces by CAE tools. Finally, it can be
well observed the effects of differ from each design parameter by response surfaces.
Keywords:magnetorheological fluid, damper, DOE, RSM.
一、 前言
台灣人口眾多且集中,但可利用之土地面積極
少,因此近年建築設計方式逐漸將高度提高,以
利容納更多人口。此外,公共建設方面也朝向立
體化設計,如捷運、高鐵等,都是為了可以更有
效利用現有土地面積。但台灣位屬環太平洋地震
帶以及颱風常發生之區域,上述超高/高層建物以
及高架式建設面對如此的天然災害,如何有效防
護以及減少震動以避免人員生命財產損失是當
前急需解決之問題。
*通訊作者
聯絡方式:E-mail: thshieh@fcu.edu.tw; TEL: (04)24517250~3960
除建築物的減震問題外,在日常生活中也有許
多產品擁有相同的情形。例如汽機車的行駛穩定
性、引擎震動、洗烘衣機等,都需要良好的減震
設計以達舒適、低噪音的使用感覺,並藉此提高
產品的性能以及使用壽命。
減震器或阻尼(damper)是一吸收元件(damping
element),其用來將移動物體之動能轉換為熱能
或聲能,藉此減少強力的震動(shock)或是過高的
擺盪幅度(oscillation amplitudes)所含之能量[1][2]
。一般常見的減震器中含有一個壓力桶管、一個
活塞連桿與一個特殊的活塞系統以及做為吸收
媒介(damping medium)的液體,如圖 1 為一單缸
4. 2012 中華民國航太學會學術研討會 新竹,中華民國一百零一年十二月十五日
2012 AASRC Conference Hsinchu, December 15, 2012
論文編號:30-18
4
參考文獻
[1] Suspa Inc., Softline – Hydraulic Dampers,
www.suspa.com.
[2] Rao, S. S., Mechanical Vibrations, 4th
ed,
Pearson Educations, Inc, 2004.
[3] Spencer, B. F., Dyke, S. J., Sain, M. K., and
Carlson, J. D., “Phenomenological Model of a
Magnetorheological Damper,” Journal of
Engineering Mechanics, Vol. 123, 1996, pp.
230-238.
[4] Zhu, Z., Jing, X., and Cheng, L.,
“Magnetorheological Fluid Dampers: a
Review on Structure Design and Analysis,”
Journal of Intelligent Material Systems and
Structure, Vol. 23, 2012, pp. 839-873.
[5] Lee, H.-J., Moon, S.-J., Jung, H.-J., Huh,
Y.-C., Jang, D.-D., “Integrated Design Method
of MR Damper and Electromagnetic Induction
System for Structural Control,” Proc. SPIE,
Sensors and Smart Structures Technologies for
Civil, Mechanical, and Aerospace Systems,
Vol. 6932, 2008.
[6] Ashfak, A., Saheed, A., Abdul Rasheed, K. K.,
and Abdul Jaleel, J., “Design, Fabrication and
Evaluation of MR Damper,” International
Journal of Aerospace and Mechanical
Engineering, Vol. 5, 2011, pp. 27-32.
[7] Jolly, M. R., Bender, J. W., and Carlson, J. D.,
“Properties and Applications of Commercial
Magnetosheological Fluid,” Journal of
Intelligent Material Systems and Structures,
Vol. 10, 1999, pp. 5-13.
[8] Parlak, Z., Engin, T., and Calli, I., “Optimal
Design of MR Damper via Finite Element
Analyses of Fluid Dynamic and Magnetic
Field,” Mechatronics, Vol. 22, 2012, pp.
890-903.
[9] Atray, V. S., and Roschke, P. N., “Design,
Fabrication, Testing, and Fuzzy Modeling of a
Large Magnetorheological Damper for
Vibration Control in a Railcar,” Proceedings
of the 2003 IEEE/ASME Joint Rail
Conference, Chicago, Illinois, pp. 223-229,
April 22-24, 2003.
[10] Poyner, J., Innovative Design For
Magneto-Rheological Dampers, Master
Thesis, Virginia Polytechnic, 2001.
[11] Hyat, W. H. Jr., and Buck, J. A., Engineering
Electromagnetics, 7th
ed, McGraw Hill, 2006.
[12] ANSYS, Design Exploration User Guide.
[13] Salvetti, M., “Detector Solenoid: Thermal and
Structural Analyses Magnet Documents”,
2004,
http://meco.ps.uci.edu/old/magnet_doc/mm05
6.pdf.
[14] Lord Corporation, MRF-132DG
Magneto-rheological fluid, 2008,
http://www.lordfulfillment.com/upload/DS701
5.pdf
表 1 設計參數值
Unit [mm]
R_L
R_t
flange
gap
D5
R_p
R_c
P_h
NumberofCoil
Diameterof
Wire
ICs 19.1 0.689 5 0.6 4.90 14.5 6.1 2.1 220 0.45
Current 1 [A]
Epoxy
Thickness
0.8 [mm]
表 2 計算精度驗證之比較結果
Parlak[8] Comparison Error
磁流變液
磁通量
[Tesla]
0.563 0.561 0.36%
表 3 設計參數界限範圍
Unit [mm]
R_L
R_t
flange
gap
D5
R_p
R_c
P_h
NumberofCoil
Diameterof
Wire
ICs 19.1 0.689 5 0.6 4.90 14.5 6.1 2.1 220 0.45
Lower
Bound
18 X 2 0.4 2 X C 1.5 C 0.3
Upper
Bound
22 X 7 1.2 5 X C 2.5 C 0.7
X:表示定值;C:相依計算值(方程式 5、6)
圖 1 單缸減震器剖面圖[10]。