際際滷
Search
Submit Search
4. Gaussian Model
1 like
690 views
J
Jungkyu Lee
Machine Learning: a Probabilistic Perspective chapter 4
Read less
Read more
1 of 7
Download now
Downloaded 18 times
More Related Content
4. Gaussian Model
1.
4. Gaussian Model 4.1
Introduction 4.2 Gaussian discriminant analysis 4.2.1 Quadratic discriminant analysis (QDA) 4.2.2 Linear discriminant analysis (LDA) 4.2.3 Two-class LDA 4.2.4 MLE for discriminant analysis 4.1 Introduction る 蠏 覿
3.
4.2 Gaussian discriminant
analysis Class螳 譯殊伎 , feature vector Gaussian 覿朱 螳 譯殊伎 (Gaussian) discriminant analysis: posterior (2.13) //p(x|y) 蠏覿 襯 れ 2-class 覓語 蟆曙 覲 亮c,裡c MLE 豢朱 蟲(轟 4.2.4), 讀 螳 企る 蠏, 螻給 襯 れ 2-class 蟆曙, 一危一 likelihood
4.
朱 豢豺 Decision Rule: class 覿襯 蟯 覿覈 讌郁 log襯 豬伎 螳 posterior襯 螳 class襦 覿襯 覈 class螳 蠏狩 prior 覿襯 螳譟る, 豌覯讌 prior 伎螻 覯讌 蠏 覿 4.2.1 Quadratic discriminant analysis (QDA) (2.13) likelihood prior 螳螳 multinomial 覿螻 蠏 覿 覃 (4.33) class襯 蟆一 x 襦 覲碁る(p(y=1|x) - p(y=0|x) > 0 企 y=1螻 螳) 伎姶(quadratic) 願 覿襯 覃(p(y=1|x) =p(y=0|x) 讌) れ螻 螳 螻′ り
5.
4.2.2 Linear discriminant
analysis (LDA) 覈 class 伎 螻給一 螻旧る( 螳る) 讀 企朱 (4.33) れ螻 螳 . 伎姶 xT 裡-1 x 覈 class 伎 狩覩襦 覿襯 レ 殊讌 蠍 覓語 殊螻, decision boundary linear 讌. 手 覃 (4.35) れ螻 螳 螻 (4.38) 企 覈 soft max豌 蠍 覓語 S softmax 手 覿襴磯. 襯 れ澗侶 = (3,0,1)企朱 れ螻 螳 豕螳 3 伎 0.8 襯 豪
6.
4.2.3 Two-class LDA 2-class
覓語襯 螳螻 (4.38) log襯 豬伎 れ螻 螳 linear 覃伎 . 硫c'- 硫c 覿襯 覃伎 覯 覯″郁 螻粒c'- 粒c 覿襯 覃伎 bias螳 . 4.2.4 MLE for discriminant analysis (4.35) mu sigma れ螻 螳 MLE襦 豢 螻 蟆郁骸 れ螻 螳 讀, 螳 class 伎 feature vectorれ 蠏螻 覿一企.
7.
讀, 螳 class
伎 feature vectorれ 蠏螻 覿一企.
Download