1. Tema 6.1 (1): Matrius
1. Nomenclatura i classificació
2. Operacions amb matrius
3. El rang d'una matriu
4. Matrius inverses
5. Equacions matricials
2. 1. Nomenclatura i classificació
p10 1,2,3,4,5
element
Matrius iguals: mateixa dimensió i elements coincidents.
(
a11 a12 a13 ... a1n
a21 a22 a23 ... a2n
... ... ... ... ...
am1 am2 am3 ... amn
) columna
fila
Dimensió: m x n
Tipus de matrius: matriu fila, matriu columna, matriu nul·la,
matriu quadrada d'ordre tal, matriu rectangular.
7. Consisteix en transformar la matriu de tal manera que quedin 0
sota la diagonal. El rang serà el nombre de files no nul·les.
Mètode de Gauss per calcular el rang d'una matriu:
A=
(
0 −2 2 4
2 −1 −1 1
2 −2 0 3)
1r pas: Primera columna tot 0's menys la primera fila
F3 – F1(
2 −1 −1 1
0 −2 2 4
2 −2 0 3) (
2 −1 −1 1
0 −2 2 4
0 −1 1 2)Canvi
fila
2n pas: Segona columna tot 0's menys la primera i segona files
(
2 −1 −1 1
0 −2 2 4
0 0 0 0)2F3 – F2
Rang(A) = 22 files no nul·les
p18 21, 22, 23, 24, 92, 93, 94
9. 4. Matrius inverses
Trobar la matriu inversa: el mètode de Gauss-Jordan.
A=
(
2 −1 2
4 −3 −1
−6 4 −2) (
2 −1 2 1 0 0
4 −3 −1 0 1 0
−6 4 −2 0 0 1)
(
2 −1 2 1 0 0
0 −1 −5 −2 1 0
0 1 4 3 0 1)
1r pas: Primera columna tot 0's menys la primera fila, segona columna tot 0's
menys segona fila, i aixà successivament fins que quedi una matriu diagonal.
F3 + 3F1
(a11=0)
F2 – 2F1
(
2 0 7 3 −1 0
0 −1 −5 −2 1 0
0 0 −1 1 1 1)F3 + F2
F1 – F2
(
2 0 0 10 6 7
0 −1 0 −7 −4 −5
0 0 −1 1 1 1 )F2 - 5F3
F1 + 7F3
10. (
2 −1 2 1 0 0
0 −1 −5 −2 1 0
0 1 4 3 0 1)
1r pas: Primera columna tot 0's menys la primera fila, segona columna tot 0's
menys segona fila, i aixà successivament fins que quedi una matriu diagonal.
F3 + 3F1
F2 – 2F1
(
2 0 7 3 −1 0
0 −1 −5 −2 1 0
0 0 −1 1 1 1)F3 + F2
F1 – F2
(
2 0 0 10 6 7
0 −1 0 −7 −4 −5
0 0 −1 1 1 1 )F2 - 5F3
F1 + 7F3
2n pas: Quan la matriu inicial està en format diagonal, la transformem en la
matriu identitat.
(
1 0 0 5 3 7/2
0 1 0 7 4 5
0 0 1 −1 −1 −1 )- F2
1/2F1
- F3
p21 28, 29
11. 5. Equacions matricials
a) Tipus AX = B
AX =B
Identitat
A
−1
· AX =A
−1
· B X =A
−1
· B
b) Tipus XA = B
XA=B
Identitat
XA· A
−1
=B· A
−1
X =B· A
−1
c) Tipus AX + B = C
AX + B=C
Identitat
A
−1
· AX =A
−1
·(C−B)
X =A
−1
·(C−B)
AX =C−B
p22 SF, 30, 31, 32, 33, operació sele10